mirror of
https://github.com/alicevision/Meshroom.git
synced 2025-05-20 12:36:29 +02:00
190 lines
6.4 KiB
Python
190 lines
6.4 KiB
Python
import json
|
|
import os
|
|
|
|
from meshroom.core import desc
|
|
|
|
|
|
class StructureFromMotion(desc.CommandLineNode):
|
|
internalFolder = '{cache}/{nodeType}/{uid0}/'
|
|
commandLine = 'aliceVision_incrementalSfM {allParams}'
|
|
size = desc.DynamicNodeSize('input')
|
|
|
|
inputs = [
|
|
desc.File(
|
|
name='input',
|
|
label='Input',
|
|
description='SfMData file.',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.ListAttribute(
|
|
elementDesc=desc.File(
|
|
name="featuresFolder",
|
|
label="Features Folder",
|
|
description="",
|
|
value="",
|
|
uid=[0],
|
|
),
|
|
name="featuresFolders",
|
|
label="Features Folders",
|
|
description="Folder(s) containing the extracted features and descriptors."
|
|
),
|
|
desc.ListAttribute(
|
|
elementDesc=desc.File(
|
|
name="matchesFolder",
|
|
label="Matches Folder",
|
|
description="",
|
|
value="",
|
|
uid=[0],
|
|
),
|
|
name="matchesFolders",
|
|
label="Matches Folders",
|
|
description="Folder(s) in which computed matches are stored."
|
|
),
|
|
desc.ChoiceParam(
|
|
name='describerTypes',
|
|
label='Describer Types',
|
|
description='Describer types used to describe an image.',
|
|
value=['SIFT'],
|
|
values=['SIFT', 'SIFT_FLOAT', 'AKAZE', 'AKAZE_LIOP', 'AKAZE_MLDB', 'CCTAG3', 'CCTAG4', 'SIFT_OCV',
|
|
'AKAZE_OCV'],
|
|
exclusive=False,
|
|
uid=[0],
|
|
joinChar=',',
|
|
),
|
|
desc.ChoiceParam(
|
|
name='localizerEstimator',
|
|
label='Localizer Estimator',
|
|
description='Estimator type used to localize cameras (acransac, ransac, lsmeds, loransac, maxconsensus).',
|
|
value='acransac',
|
|
values=['acransac', 'ransac', 'lsmeds', 'loransac', 'maxconsensus'],
|
|
exclusive=True,
|
|
uid=[0],
|
|
),
|
|
desc.BoolParam(
|
|
name='useLocalBA',
|
|
label='Local Bundle Adjustment',
|
|
description='It reduces the reconstruction time, especially for large datasets (500+ images),\n'
|
|
'by avoiding computation of the Bundle Adjustment on areas that are not changing.',
|
|
value=True,
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='localBAGraphDistance',
|
|
label='LocalBA Graph Distance',
|
|
description='Graph-distance limit to define the Active region in the Local Bundle Adjustment strategy.',
|
|
value=1,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='maxNumberOfMatches',
|
|
label='Maximum Number of Matches',
|
|
description='Maximum number of matches per image pair (and per feature type). \n'
|
|
'This can be useful to have a quick reconstruction overview. \n'
|
|
'0 means no limit.',
|
|
value=0,
|
|
range=(0, 50000, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minInputTrackLength',
|
|
label='Min Input Track Length',
|
|
description='Minimum track length in input of SfM',
|
|
value=2,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minNumberOfObservationsForTriangulation',
|
|
label='Min Observation For Triangulation',
|
|
description='Minimum number of observations to triangulate a point.\n'
|
|
'Set it to 3 (or more) reduces drastically the noise in the point cloud,\n'
|
|
'but the number of final poses is a little bit reduced\n'
|
|
'(from 1.5% to 11% on the tested datasets).',
|
|
value=2,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
),
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='initialPairA',
|
|
label='Initial Pair A',
|
|
description='Filename of the first image (without path).',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='initialPairB',
|
|
label='Initial Pair B',
|
|
description='Filename of the second image (without path).',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.ChoiceParam(
|
|
name='interFileExtension',
|
|
label='Inter File Extension',
|
|
description='Extension of the intermediate file export.',
|
|
value='.abc',
|
|
values=('.abc', '.ply'),
|
|
exclusive=True,
|
|
uid=[],
|
|
),
|
|
desc.ChoiceParam(
|
|
name='verboseLevel',
|
|
label='Verbose Level',
|
|
description='Verbosity level (fatal, error, warning, info, debug, trace).',
|
|
value='info',
|
|
values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'],
|
|
exclusive=True,
|
|
uid=[],
|
|
)
|
|
]
|
|
|
|
outputs = [
|
|
desc.File(
|
|
name='output',
|
|
label='Output SfMData File',
|
|
description='Path to the output sfmdata file',
|
|
value='{cache}/{nodeType}/{uid0}/sfm.abc',
|
|
uid=[],
|
|
),
|
|
desc.File(
|
|
name='outputViewsAndPoses',
|
|
label='Output SfMData File',
|
|
description='''Path to the output sfmdata file with cameras (views and poses).''',
|
|
value='{cache}/{nodeType}/{uid0}/cameras.sfm',
|
|
uid=[],
|
|
),
|
|
desc.File(
|
|
name='extraInfoFolder',
|
|
label='Output Folder',
|
|
description='Folder for intermediate reconstruction files and additional reconstruction information files.',
|
|
value='{cache}/{nodeType}/{uid0}/',
|
|
uid=[],
|
|
),
|
|
]
|
|
|
|
@staticmethod
|
|
def getViewsAndPoses(node):
|
|
"""
|
|
Parse SfM result and return views and poses as two dict with viewId and poseId as keys.
|
|
"""
|
|
reportFile = node.outputViewsAndPoses.value
|
|
if not os.path.exists(reportFile):
|
|
return {}, {}
|
|
|
|
with open(reportFile) as jsonFile:
|
|
report = json.load(jsonFile)
|
|
|
|
views = dict()
|
|
poses = dict()
|
|
|
|
for view in report['views']:
|
|
views[view['viewId']] = view
|
|
|
|
for pose in report['poses']:
|
|
poses[pose['poseId']] = pose['pose']
|
|
|
|
return views, poses
|