import json import os from meshroom.core import desc class StructureFromMotion(desc.CommandLineNode): internalFolder = '{cache}/{nodeType}/{uid0}/' commandLine = 'aliceVision_incrementalSfM {allParams}' size = desc.DynamicNodeSize('input') inputs = [ desc.File( name='input', label='Input', description='SfMData file.', value='', uid=[0], ), desc.ListAttribute( elementDesc=desc.File( name="featuresFolder", label="Features Folder", description="", value="", uid=[0], ), name="featuresFolders", label="Features Folders", description="Folder(s) containing the extracted features and descriptors." ), desc.ListAttribute( elementDesc=desc.File( name="matchesFolder", label="Matches Folder", description="", value="", uid=[0], ), name="matchesFolders", label="Matches Folders", description="Folder(s) in which computed matches are stored." ), desc.ChoiceParam( name='describerTypes', label='Describer Types', description='Describer types used to describe an image.', value=['SIFT'], values=['SIFT', 'SIFT_FLOAT', 'AKAZE', 'AKAZE_LIOP', 'AKAZE_MLDB', 'CCTAG3', 'CCTAG4', 'SIFT_OCV', 'AKAZE_OCV'], exclusive=False, uid=[0], joinChar=',', ), desc.ChoiceParam( name='localizerEstimator', label='Localizer Estimator', description='Estimator type used to localize cameras (acransac, ransac, lsmeds, loransac, maxconsensus).', value='acransac', values=['acransac', 'ransac', 'lsmeds', 'loransac', 'maxconsensus'], exclusive=True, uid=[0], ), desc.BoolParam( name='useLocalBA', label='Local Bundle Adjustment', description='It reduces the reconstruction time, especially for large datasets (500+ images),\n' 'by avoiding computation of the Bundle Adjustment on areas that are not changing.', value=True, uid=[0], ), desc.IntParam( name='localBAGraphDistance', label='LocalBA Graph Distance', description='Graph-distance limit to define the Active region in the Local Bundle Adjustment strategy.', value=1, range=(2, 10, 1), uid=[0], ), desc.IntParam( name='maxNumberOfMatches', label='Maximum Number of Matches', description='Maximum number of matches per image pair (and per feature type). \n' 'This can be useful to have a quick reconstruction overview. \n' '0 means no limit.', value=0, range=(0, 50000, 1), uid=[0], ), desc.IntParam( name='minInputTrackLength', label='Min Input Track Length', description='Minimum track length in input of SfM', value=2, range=(2, 10, 1), uid=[0], ), desc.IntParam( name='minNumberOfObservationsForTriangulation', label='Min Observation For Triangulation', description='Minimum number of observations to triangulate a point.\n' 'Set it to 3 (or more) reduces drastically the noise in the point cloud,\n' 'but the number of final poses is a little bit reduced\n' '(from 1.5% to 11% on the tested datasets).', value=2, range=(2, 10, 1), uid=[0], ), uid=[0], ), desc.File( name='initialPairA', label='Initial Pair A', description='Filename of the first image (without path).', value='', uid=[0], ), desc.File( name='initialPairB', label='Initial Pair B', description='Filename of the second image (without path).', value='', uid=[0], ), desc.ChoiceParam( name='interFileExtension', label='Inter File Extension', description='Extension of the intermediate file export.', value='.abc', values=('.abc', '.ply'), exclusive=True, uid=[], ), desc.ChoiceParam( name='verboseLevel', label='Verbose Level', description='Verbosity level (fatal, error, warning, info, debug, trace).', value='info', values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'], exclusive=True, uid=[], ) ] outputs = [ desc.File( name='output', label='Output SfMData File', description='Path to the output sfmdata file', value='{cache}/{nodeType}/{uid0}/sfm.abc', uid=[], ), desc.File( name='outputViewsAndPoses', label='Output SfMData File', description='''Path to the output sfmdata file with cameras (views and poses).''', value='{cache}/{nodeType}/{uid0}/cameras.sfm', uid=[], ), desc.File( name='extraInfoFolder', label='Output Folder', description='Folder for intermediate reconstruction files and additional reconstruction information files.', value='{cache}/{nodeType}/{uid0}/', uid=[], ), ] @staticmethod def getViewsAndPoses(node): """ Parse SfM result and return views and poses as two dict with viewId and poseId as keys. """ reportFile = node.outputViewsAndPoses.value if not os.path.exists(reportFile): return {}, {} with open(reportFile) as jsonFile: report = json.load(jsonFile) views = dict() poses = dict() for view in report['views']: views[view['viewId']] = view for pose in report['poses']: poses[pose['poseId']] = pose['pose'] return views, poses