snapcast/server/streamreader/asio_stream.hpp
2025-01-09 15:06:35 +01:00

266 lines
8.2 KiB
C++

/***
This file is part of snapcast
Copyright (C) 2014-2025 Johannes Pohl
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
***/
#pragma once
// local headers
#include "common/aixlog.hpp"
#include "common/str_compat.hpp"
#include "pcm_stream.hpp"
// 3rd party headers
#include <boost/asio/io_context.hpp>
#include <boost/asio/read.hpp>
#include <boost/asio/steady_timer.hpp>
// standard headers
namespace streamreader
{
using namespace std::chrono_literals;
template <typename ReadStream>
class AsioStream : public PcmStream
{
public:
/// ctor. Encoded PCM data is passed to the PipeListener
AsioStream(PcmStream::Listener* pcmListener, boost::asio::io_context& ioc, const ServerSettings& server_settings, const StreamUri& uri);
void start() override;
void stop() override;
protected:
virtual void connect() = 0;
virtual void disconnect();
virtual void on_connect();
virtual void do_read();
/// Start a timer that will change the stream state to idle after \p duration
void check_state(const std::chrono::steady_clock::duration& duration);
/// Use Timer \p timer to call \p handler after \p duration
template <typename Timer, typename Rep, typename Period>
void wait(Timer& timer, const std::chrono::duration<Rep, Period>& duration, std::function<void()> handler);
/// Cache last exception to avoid repeated error logging
std::string lastException_;
timeval tv_chunk_;
bool first_;
std::chrono::time_point<std::chrono::steady_clock> nextTick_;
uint32_t buffer_ms_;
boost::asio::steady_timer read_timer_;
boost::asio::steady_timer state_timer_;
std::unique_ptr<ReadStream> stream_;
/// duration of the current silence period
std::chrono::microseconds silence_{0ms};
/// silence duration before switching the stream to idle
std::chrono::milliseconds idle_threshold_;
};
template <typename ReadStream>
template <typename Timer, typename Rep, typename Period>
void AsioStream<ReadStream>::wait(Timer& timer, const std::chrono::duration<Rep, Period>& duration, std::function<void()> handler)
{
timer.expires_after(duration);
timer.async_wait([handler = std::move(handler)](const boost::system::error_code& ec)
{
if (ec)
{
LOG(ERROR, "AsioStream") << "Error during async wait: " << ec.message() << "\n";
}
else
{
handler();
}
});
}
template <typename ReadStream>
AsioStream<ReadStream>::AsioStream(PcmStream::Listener* pcmListener, boost::asio::io_context& ioc, const ServerSettings& server_settings, const StreamUri& uri)
: PcmStream(pcmListener, ioc, server_settings, uri), read_timer_(strand_), state_timer_(strand_)
{
LOG(DEBUG, "AsioStream") << "Chunk duration: " << chunk_->durationMs() << " ms, frames: " << chunk_->getFrameCount() << ", size: " << chunk_->payloadSize
<< "\n";
idle_threshold_ = std::chrono::milliseconds(std::max(cpt::stoi(uri_.getQuery("idle_threshold", "100")), 10));
buffer_ms_ = 50;
try
{
buffer_ms_ = cpt::stoi(uri_.getQuery("buffer_ms", cpt::to_string(buffer_ms_)));
}
catch (...)
{
}
}
template <typename ReadStream>
void AsioStream<ReadStream>::check_state(const std::chrono::steady_clock::duration& duration)
{
state_timer_.expires_after(duration);
state_timer_.async_wait([this, duration](const boost::system::error_code& ec)
{
if (!ec)
{
LOG(INFO, "AsioStream") << "No data since " << std::chrono::duration_cast<std::chrono::milliseconds>(duration).count()
<< " ms, switching to idle\n";
setState(ReaderState::kIdle);
}
});
}
template <typename ReadStream>
void AsioStream<ReadStream>::start()
{
PcmStream::start();
connect();
}
template <typename ReadStream>
void AsioStream<ReadStream>::stop()
{
read_timer_.cancel();
disconnect();
PcmStream::stop();
}
template <typename ReadStream>
void AsioStream<ReadStream>::disconnect()
{
if (stream_ && stream_->is_open())
stream_->close();
setState(ReaderState::kIdle);
}
template <typename ReadStream>
void AsioStream<ReadStream>::on_connect()
{
first_ = true;
tvEncodedChunk_ = std::chrono::steady_clock::now();
do_read();
}
template <typename ReadStream>
void AsioStream<ReadStream>::do_read()
{
// Reset the silence timer
check_state(idle_threshold_ + std::chrono::milliseconds(chunk_ms_));
boost::asio::async_read(*stream_, boost::asio::buffer(chunk_->payload, chunk_->payloadSize),
[this](boost::system::error_code ec, std::size_t length) mutable
{
state_timer_.cancel();
if (ec)
{
if (lastException_ != ec.message())
{
LOG(ERROR, "AsioStream") << "Error reading message: " << ec.message() << ", length: " << length << ", ec: " << ec << "\n";
lastException_ = ec.message();
}
disconnect();
wait(read_timer_, 100ms, [this] { connect(); });
return;
}
lastException_.clear();
if (isSilent(*chunk_))
{
silence_ += chunk_->duration<std::chrono::microseconds>();
if (silence_ >= idle_threshold_)
{
setState(ReaderState::kIdle);
// Avoid overflow
silence_ = idle_threshold_;
}
}
else
{
silence_ = 0ms;
setState(ReaderState::kPlaying);
}
// LOG(DEBUG, "AsioStream") << "Read: " << length << " bytes\n";
// First read after connect. Set the initial read timestamp
// the timestamp will be incremented after encoding,
// since we do not know how much the encoder actually encoded
// if (!first_)
// {
// auto now = std::chrono::steady_clock::now();
// auto stream2systime_diff = now - tvEncodedChunk_;
// if (stream2systime_diff > chronos::sec(5) + chronos::msec(chunk_ms_))
// {
// LOG(WARNING, "AsioStream") << "Stream and system time out of sync: "
// << std::chrono::duration_cast<std::chrono::microseconds>(stream2systime_diff).count() / 1000.
// << " ms, resetting stream time.\n";
// first_ = true;
// }
// }
if (first_)
{
first_ = false;
tvEncodedChunk_ = std::chrono::steady_clock::now() - chunk_->duration<std::chrono::nanoseconds>();
nextTick_ = std::chrono::steady_clock::now();
}
chunkRead(*chunk_);
nextTick_ += chunk_->duration<std::chrono::nanoseconds>();
auto currentTick = std::chrono::steady_clock::now();
// Synchronize read to chunk_ms_
if (nextTick_ >= currentTick)
{
read_timer_.expires_after(nextTick_ - currentTick);
read_timer_.async_wait([this](const boost::system::error_code& ec)
{
if (ec)
{
LOG(ERROR, "AsioStream") << "Error during async wait: " << ec.message() << "\n";
}
else
{
do_read();
}
});
return;
}
// Read took longer, wait for the buffer to fill up
else
{
resync(std::chrono::duration_cast<std::chrono::nanoseconds>(currentTick - nextTick_));
first_ = true;
do_read();
}
});
}
} // namespace streamreader