/*** This file is part of snapcast Copyright (C) 2014-2025 Johannes Pohl This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ***/ // prototype/interface header file #include "alsa_stream.hpp" // local headers #include "common/aixlog.hpp" #include "common/snap_exception.hpp" #include "common/str_compat.hpp" // 3rd party headers #include // standard headers #include #include using namespace std; using namespace std::chrono_literals; namespace streamreader { static constexpr auto LOG_TAG = "AlsaStream"; static constexpr auto kResyncTolerance = 50ms; // https://superuser.com/questions/597227/linux-arecord-capture-sound-card-output-rather-than-microphone-input // https://wiki.ubuntuusers.de/.asoundrc/ // https://alsa.opensrc.org/Dsnoop#The_dsnoop_howto // https://linuxconfig.org/how-to-test-microphone-with-audio-linux-sound-architecture-alsa // https://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2latency_8c-example.html#a30 namespace { template void wait(boost::asio::steady_timer& timer, const std::chrono::duration& duration, std::function handler) { timer.expires_after(duration); timer.async_wait( [handler = std::move(handler)](const boost::system::error_code& ec) { if (ec) { LOG(ERROR, LOG_TAG) << "Error during async wait: " << ec.message() << "\n"; } else { handler(); } }); } } // namespace AlsaStream::AlsaStream(PcmStream::Listener* pcmListener, boost::asio::io_context& ioc, const ServerSettings& server_settings, const StreamUri& uri) : PcmStream(pcmListener, ioc, server_settings, uri), handle_(nullptr), read_timer_(strand_), silence_(0ms) { device_ = uri_.getQuery("device", "hw:0"); send_silence_ = (uri_.getQuery("send_silence", "false") == "true"); idle_threshold_ = std::chrono::milliseconds(std::max(cpt::stoi(uri_.getQuery("idle_threshold", "100")), 10)); } void AlsaStream::start() { LOG(DEBUG, LOG_TAG) << "Start, sampleformat: " << sampleFormat_.toString() << "\n"; initAlsa(); first_ = true; tvEncodedChunk_ = std::chrono::steady_clock::now(); PcmStream::start(); // wait(read_timer_, std::chrono::milliseconds(chunk_ms_), [this] { do_read(); }); boost::asio::post(strand_, [this] { do_read(); }); } void AlsaStream::stop() { PcmStream::stop(); uninitAlsa(); } void AlsaStream::initAlsa() { int err; unsigned int rate = sampleFormat_.rate(); snd_pcm_format_t snd_pcm_format; if (sampleFormat_.bits() == 8) snd_pcm_format = SND_PCM_FORMAT_S8; else if (sampleFormat_.bits() == 16) snd_pcm_format = SND_PCM_FORMAT_S16_LE; else if ((sampleFormat_.bits() == 24) && (sampleFormat_.sampleSize() == 4)) snd_pcm_format = SND_PCM_FORMAT_S24_LE; else if (sampleFormat_.bits() == 32) snd_pcm_format = SND_PCM_FORMAT_S32_LE; else throw SnapException("Unsupported sample format: " + cpt::to_string(sampleFormat_.bits())); if ((err = snd_pcm_open(&handle_, device_.c_str(), SND_PCM_STREAM_CAPTURE, SND_PCM_NONBLOCK)) < 0) // SND_PCM_NONBLOCK throw SnapException("Can't open device '" + device_ + "', error: " + snd_strerror(err)); snd_pcm_hw_params_t* hw_params; if ((err = snd_pcm_hw_params_malloc(&hw_params)) < 0) throw SnapException("Can't allocate hardware parameter structure: " + string(snd_strerror(err))); if ((err = snd_pcm_hw_params_any(handle_, hw_params)) < 0) throw SnapException("Can't fill params: " + string(snd_strerror(err))); if ((err = snd_pcm_hw_params_set_access(handle_, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) throw SnapException("Can't set interleaved mode: " + string(snd_strerror(err))); if ((err = snd_pcm_hw_params_set_format(handle_, hw_params, snd_pcm_format)) < 0) throw SnapException("Can't set sample format: " + string(snd_strerror(err))); if ((err = snd_pcm_hw_params_set_rate_near(handle_, hw_params, &rate, nullptr)) < 0) throw SnapException("Can't set rate: " + string(snd_strerror(err))); if (rate != sampleFormat_.rate()) { LOG(WARNING, LOG_TAG) << "Rate is not accurate (requested: " << sampleFormat_.rate() << ", got: " << rate << "), using: " << rate << "\n"; sampleFormat_.setFormat(rate, sampleFormat_.bits(), sampleFormat_.channels()); } if ((err = snd_pcm_hw_params_set_channels(handle_, hw_params, sampleFormat_.channels())) < 0) throw SnapException("Can't set channel count: " + string(snd_strerror(err))); if ((err = snd_pcm_hw_params(handle_, hw_params)) < 0) throw SnapException("Can't set hardware parameters: " + string(snd_strerror(err))); #if 0 // Period size test code // snd_pcm_uframes_t period_size; // if ((err = snd_pcm_hw_params_get_period_size(hw_params, &period_size, nullptr)) < 0) // LOG(ERROR, LOG_TAG) << "Can't get min period size: " << snd_strerror(err) << "\n"; // else // LOG(INFO, LOG_TAG) << "Period size: " << period_size << ", " << double(period_size) / double(sampleFormat_.rate()) * 1000. << " ms\n"; // period_size = sampleFormat_.msRate() * chunk_ms_; // if ((err = snd_pcm_hw_params_set_period_size_near(handle_, hw_params, &period_size, 0)) < 0) // LOG(ERROR, LOG_TAG) << "Can't set period size: " << snd_strerror(err) << "\n"; // else // LOG(INFO, LOG_TAG) << "Period size: " << period_size << ", " << double(period_size) / double(sampleFormat_.rate()) * 1000. << " ms\n"; // chunk_ = std::make_unique(sampleFormat_, 2*period_size, false); // LOG(INFO, LOG_TAG) << "Chunk duration: " << chunk_->duration().count() << "\n"; #endif snd_pcm_hw_params_free(hw_params); if ((err = snd_pcm_prepare(handle_)) < 0) throw SnapException("Can't prepare audio interface for use: " + string(snd_strerror(err))); if (snd_pcm_state(handle_) == SND_PCM_STATE_PREPARED) { if ((err = snd_pcm_start(handle_)) < 0) throw SnapException("Failed to start PCM: " + string(snd_strerror(err))); } } void AlsaStream::uninitAlsa() { if (handle_ != nullptr) { snd_pcm_close(handle_); handle_ = nullptr; } } void AlsaStream::do_read() { try { if (first_) { LOG(TRACE, LOG_TAG) << "First read, initializing nextTick to now\n"; nextTick_ = std::chrono::steady_clock::now(); } auto avail = snd_pcm_avail(handle_); if (avail >= 0) { #if 0 // Some debug code static long max_avail = 0; if (avail > max_avail) { max_avail = avail; LOG(INFO, LOG_TAG) << "Max Available: " << avail << ", " << double(avail) / double(sampleFormat_.rate()) * 1000. << " ms\n"; } static utils::logging::TimeConditional cond(1s); LOG(INFO, LOG_TAG) << cond << "Available: " << avail << ", " << double(avail) / double(sampleFormat_.rate()) * 1000. << " ms, max: " << double(max_avail) / double(sampleFormat_.rate()) * 1000. << " ms\n"; #endif // check if enough data is available to read from alsa if ((static_cast(chunk_->getFrameCount()) > avail)) { // Calculate when there will be enough data available, add half chunk duration tolerance and try later auto available = std::chrono::milliseconds(static_cast(double(avail) / double(sampleFormat_.rate()) * 1000.)); auto missing = chunk_->duration() - available; LOG(INFO, LOG_TAG) << "Not enough data available: " << available.count() << " ms, missing: " << missing.count() << " ms, needed: " << chunk_->duration().count() << " ms\n"; missing += chunk_->duration() / 2; resync(missing); first_ = true; wait(read_timer_, missing, [this] { do_read(); }); return; } // check if there is too much data available, i.e. if we are far behind else if (avail > static_cast(3 * chunk_->getFrameCount())) { // Fast forward, by reading and dropping audio frames // const auto newAvail = static_cast(chunk_->getFrameCount() + static_cast(chunk_->format.msRate() * 20)); const auto newAvail = 1.5 * chunk_->getFrameCount(); LOG(INFO, LOG_TAG) << "Too many frames available, fast forwarding from " << avail << " frames (" << double(avail) / double(sampleFormat_.rate()) * 1000. << " ms) to " << newAvail << " frames (" << double(newAvail) / double(sampleFormat_.rate()) * 1000. << " ms)\n"; do { int count = snd_pcm_readi(handle_, chunk_->payload, std::min(chunk_->getFrameCount(), static_cast(avail - newAvail))); if (count <= 0) { // some read error happened, just break here, this will be handled properly later in the read loop break; } avail -= count; LOG(DEBUG, LOG_TAG) << "Read " << count << " frames (" << double(count) / double(sampleFormat_.rate()) * 1000. << " ms), available: " << avail << " frames (" << double(avail) / double(sampleFormat_.rate()) * 1000. << " ms)\n"; } while (avail > newAvail); first_ = true; } } int toRead = chunk_->payloadSize; auto duration = chunk_->duration(); int len = 0; do { snd_pcm_sframes_t count = snd_pcm_readi(handle_, chunk_->payload + len, (toRead - len) / chunk_->format.frameSize()); if (count == -EAGAIN) { LOG(INFO, LOG_TAG) << "No data availabale, playing silence.\n"; // no data available, fill with silence memset(chunk_->payload + len, 0, toRead - len); break; } else if (count == 0) { throw SnapException("end of file"); } else if (count < 0) { // ESTRPIPE LOG(ERROR, LOG_TAG) << "Error reading PCM data: " << snd_strerror(count) << " (code: " << count << ")\n"; first_ = true; uninitAlsa(); initAlsa(); continue; } else { // LOG(TRACE, LOG_TAG) << "count: " << count << ", len: " << len << ", toRead: " << toRead << "\n"; len += count * chunk_->format.frameSize(); } } while (len < toRead); if (isSilent(*chunk_)) { silence_ += chunk_->duration(); if (silence_ > idle_threshold_) { setState(ReaderState::kIdle); } } else { silence_ = 0ms; if ((state_ == ReaderState::kIdle) && !send_silence_) first_ = true; setState(ReaderState::kPlaying); } // LOG(DEBUG, LOG_TAG) << "Received " << len << "/" << toRead << " bytes\n"; if (first_) { first_ = false; // initialize the stream's base timestamp to now minus the chunk's duration tvEncodedChunk_ = std::chrono::steady_clock::now() - duration; } if ((state_ == ReaderState::kPlaying) || ((state_ == ReaderState::kIdle) && send_silence_)) { chunkRead(*chunk_); } nextTick_ += duration; auto currentTick = std::chrono::steady_clock::now(); auto next_read = nextTick_ - currentTick; if (next_read >= 0ms) { // LOG(DEBUG, LOG_TAG) << "Next read: " << std::chrono::duration_cast(next_read).count() << "\n"; // synchronize reads to an interval of chunk_ms_ wait(read_timer_, next_read, [this] { do_read(); }); return; } else if (next_read >= -kResyncTolerance) { LOG(INFO, LOG_TAG) << "next read < 0 (" << getName() << "): " << std::chrono::duration_cast(next_read).count() / 1000. << " ms\n "; boost::asio::post(strand_, [this] { do_read(); }); } else { // reading chunk_ms_ took longer than chunk_ms_ resync(-next_read); first_ = true; boost::asio::post(strand_, [this] { do_read(); }); } lastException_ = ""; } catch (const std::exception& e) { if (lastException_ != e.what()) { LOG(ERROR, LOG_TAG) << "Exception: " << e.what() << "\n"; lastException_ = e.what(); } first_ = true; uninitAlsa(); initAlsa(); wait(read_timer_, 100ms, [this] { do_read(); }); } } } // namespace streamreader