mirror of
https://github.com/pomerium/pomerium.git
synced 2025-04-29 18:36:30 +02:00
* core/ci: update linting * re-add exportloopref * re-add gocheckcompilerdirectives * re-add stylecheck * re-add usestdlibvars * upgrade lint --------- Co-authored-by: Denis Mishin <dmishin@pomerium.com>
156 lines
4.7 KiB
Go
156 lines
4.7 KiB
Go
// Package deterministicecdsa contains the original ecdsa.GenerateKey before it was made non-deterministic.
|
|
package deterministicecdsa
|
|
|
|
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
|
|
// defined in FIPS 186-4 and SEC 1, Version 2.0.
|
|
//
|
|
// Signatures generated by this package are not deterministic, but entropy is
|
|
// mixed with the private key and the message, achieving the same level of
|
|
// security in case of randomness source failure.
|
|
|
|
// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
|
|
// That standard is not freely available, which is a problem in an open source
|
|
// implementation, because not only the implementer, but also any maintainer,
|
|
// contributor, reviewer, auditor, and learner needs access to it. Instead, this
|
|
// package references and follows the equivalent [SEC 1, Version 2.0].
|
|
//
|
|
// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
|
// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"io"
|
|
"math/big"
|
|
|
|
"golang.org/x/crypto/cryptobyte"
|
|
"golang.org/x/crypto/cryptobyte/asn1"
|
|
)
|
|
|
|
var one = new(big.Int).SetInt64(1)
|
|
|
|
// randFieldElement returns a random element of the order of the given
|
|
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
params := c.Params()
|
|
// Note that for P-521 this will actually be 63 bits more than the order, as
|
|
// division rounds down, but the extra bit is inconsequential.
|
|
b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
|
|
_, err = io.ReadFull(rand, b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
k = new(big.Int).SetBytes(b)
|
|
n := new(big.Int).Sub(params.N, one)
|
|
k.Mod(k, n)
|
|
k.Add(k, one)
|
|
return
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
|
// first. We follow [SECG] because that's what OpenSSL does.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := orderBytes*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// GenerateKey generates a public and private key pair.
|
|
func GenerateKey(c elliptic.Curve, rand io.Reader) (*ecdsa.PrivateKey, error) {
|
|
k, err := randFieldElement(c, rand)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
priv := new(ecdsa.PrivateKey)
|
|
priv.PublicKey.Curve = c
|
|
priv.D = k
|
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
|
return priv, nil
|
|
}
|
|
|
|
type deterministicPrivateKey struct {
|
|
*ecdsa.PrivateKey
|
|
}
|
|
|
|
// WrapPrivateKey wraps a private key so that the Sign method is deterministic
|
|
func WrapPrivateKey(privateKey *ecdsa.PrivateKey) crypto.PrivateKey {
|
|
return deterministicPrivateKey{PrivateKey: privateKey}
|
|
}
|
|
|
|
// Sign signs digest with priv, reading randomness from rand. The opts argument
|
|
// is not currently used but, in keeping with the crypto.Signer interface,
|
|
// should be the hash function used to digest the message.
|
|
//
|
|
// This method implements crypto.Signer, which is an interface to support keys
|
|
// where the private part is kept in, for example, a hardware module. Common
|
|
// uses can use the SignASN1 function in this package directly.
|
|
func (priv deterministicPrivateKey) Sign(rand io.Reader, digest []byte, _ crypto.SignerOpts) ([]byte, error) {
|
|
r, s, err := Sign(rand, priv.PrivateKey, digest)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var b cryptobyte.Builder
|
|
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
|
|
b.AddASN1BigInt(r)
|
|
b.AddASN1BigInt(s)
|
|
})
|
|
return b.Bytes()
|
|
}
|
|
|
|
// Sign signs an arbitrary length hash (which should be the result of hashing a
|
|
// larger message) using the private key, priv. It returns the signature as a
|
|
// pair of integers. The security of the private key depends on the entropy of
|
|
// rand.
|
|
func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
// See [NSA] 3.4.1
|
|
c := priv.PublicKey.Curve
|
|
N := c.Params().N
|
|
|
|
var k, kInv *big.Int
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, rand)
|
|
if err != nil {
|
|
r = nil
|
|
return r, s, err
|
|
}
|
|
|
|
kInv = new(big.Int).ModInverse(k, N)
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
|
|
r.Mod(r, N)
|
|
if r.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
e := hashToInt(hash, c)
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s.Add(s, e)
|
|
s.Mul(s, kInv)
|
|
s.Mod(s, N)
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return r, s, err
|
|
}
|