// Package deterministicecdsa contains the original ecdsa.GenerateKey before it was made non-deterministic. package deterministicecdsa // Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as // defined in FIPS 186-4 and SEC 1, Version 2.0. // // Signatures generated by this package are not deterministic, but entropy is // mixed with the private key and the message, achieving the same level of // security in case of randomness source failure. // [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm. // That standard is not freely available, which is a problem in an open source // implementation, because not only the implementer, but also any maintainer, // contributor, reviewer, auditor, and learner needs access to it. Instead, this // package references and follows the equivalent [SEC 1, Version 2.0]. // // [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf // [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf import ( "crypto" "crypto/ecdsa" "crypto/elliptic" "io" "math/big" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) var one = new(big.Int).SetInt64(1) // randFieldElement returns a random element of the order of the given // curve using the procedure given in FIPS 186-4, Appendix B.5.1. func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { params := c.Params() // Note that for P-521 this will actually be 63 bits more than the order, as // division rounds down, but the extra bit is inconsequential. b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen() _, err = io.ReadFull(rand, b) if err != nil { return } k = new(big.Int).SetBytes(b) n := new(big.Int).Sub(params.N, one) k.Mod(k, n) k.Add(k, one) return } // hashToInt converts a hash value to an integer. There is some disagreement // about how this is done. [NSA] suggests that this is done in the obvious // manner, but [SECG] truncates the hash to the bit-length of the curve order // first. We follow [SECG] because that's what OpenSSL does. func hashToInt(hash []byte, c elliptic.Curve) *big.Int { orderBits := c.Params().N.BitLen() orderBytes := (orderBits + 7) / 8 if len(hash) > orderBytes { hash = hash[:orderBytes] } ret := new(big.Int).SetBytes(hash) excess := orderBytes*8 - orderBits if excess > 0 { ret.Rsh(ret, uint(excess)) } return ret } // GenerateKey generates a public and private key pair. func GenerateKey(c elliptic.Curve, rand io.Reader) (*ecdsa.PrivateKey, error) { k, err := randFieldElement(c, rand) if err != nil { return nil, err } priv := new(ecdsa.PrivateKey) priv.PublicKey.Curve = c priv.D = k priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) return priv, nil } type deterministicPrivateKey struct { *ecdsa.PrivateKey } // WrapPrivateKey wraps a private key so that the Sign method is deterministic func WrapPrivateKey(privateKey *ecdsa.PrivateKey) crypto.PrivateKey { return deterministicPrivateKey{PrivateKey: privateKey} } // Sign signs digest with priv, reading randomness from rand. The opts argument // is not currently used but, in keeping with the crypto.Signer interface, // should be the hash function used to digest the message. // // This method implements crypto.Signer, which is an interface to support keys // where the private part is kept in, for example, a hardware module. Common // uses can use the SignASN1 function in this package directly. func (priv deterministicPrivateKey) Sign(rand io.Reader, digest []byte, _ crypto.SignerOpts) ([]byte, error) { r, s, err := Sign(rand, priv.PrivateKey, digest) if err != nil { return nil, err } var b cryptobyte.Builder b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) { b.AddASN1BigInt(r) b.AddASN1BigInt(s) }) return b.Bytes() } // Sign signs an arbitrary length hash (which should be the result of hashing a // larger message) using the private key, priv. It returns the signature as a // pair of integers. The security of the private key depends on the entropy of // rand. func Sign(rand io.Reader, priv *ecdsa.PrivateKey, hash []byte) (r, s *big.Int, err error) { // See [NSA] 3.4.1 c := priv.PublicKey.Curve N := c.Params().N var k, kInv *big.Int for { for { k, err = randFieldElement(c, rand) if err != nil { r = nil return r, s, err } kInv = new(big.Int).ModInverse(k, N) r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) r.Mod(r, N) if r.Sign() != 0 { break } } e := hashToInt(hash, c) s = new(big.Int).Mul(priv.D, r) s.Add(s, e) s.Mul(s, kInv) s.Mod(s, N) if s.Sign() != 0 { break } } return r, s, err }