penpot/render-wasm/src/shapes/modifiers/flex_layout.rs
2025-06-19 13:03:25 +02:00

713 lines
24 KiB
Rust

#![allow(dead_code)]
use crate::math::{self as math, Bounds, Matrix, Point, Vector, VectorExt};
use crate::shapes::{
modified_children_ids, AlignContent, AlignItems, AlignSelf, FlexData, JustifyContent,
LayoutData, LayoutItem, Modifier, Shape, StructureEntry,
};
use crate::uuid::Uuid;
use std::collections::{HashMap, VecDeque};
use super::common::GetBounds;
const MIN_SIZE: f32 = 0.01;
const MAX_SIZE: f32 = f32::INFINITY;
#[derive(Debug)]
struct TrackData {
main_size: f32,
across_size: f32,
max_across_size: f32,
is_fill_across: bool,
shapes: Vec<ChildAxis>,
anchor: Point,
}
impl TrackData {
fn default() -> Self {
Self {
main_size: MIN_SIZE,
across_size: MIN_SIZE,
max_across_size: MAX_SIZE,
is_fill_across: false,
shapes: Vec::new(),
anchor: Point::default(),
}
}
}
#[derive(Debug)]
struct LayoutAxis {
main_size: f32,
across_size: f32,
main_v: Vector,
across_v: Vector,
padding_main_start: f32,
padding_main_end: f32,
padding_across_start: f32,
padding_across_end: f32,
gap_main: f32,
gap_across: f32,
is_auto_main: bool,
is_auto_across: bool,
}
impl LayoutAxis {
fn main_space(&self) -> f32 {
self.main_size - self.padding_main_start - self.padding_main_end
}
fn across_space(&self) -> f32 {
self.across_size - self.padding_across_start - self.padding_across_end
}
}
impl LayoutAxis {
fn new(
shape: &Shape,
layout_bounds: &Bounds,
layout_data: &LayoutData,
flex_data: &FlexData,
) -> Self {
if flex_data.is_row() {
Self {
main_size: layout_bounds.width(),
across_size: layout_bounds.height(),
main_v: layout_bounds.hv(1.0),
across_v: layout_bounds.vv(1.0),
padding_main_start: layout_data.padding_left,
padding_main_end: layout_data.padding_right,
padding_across_start: layout_data.padding_top,
padding_across_end: layout_data.padding_bottom,
gap_main: layout_data.column_gap,
gap_across: layout_data.row_gap,
is_auto_main: shape.is_layout_horizontal_auto(),
is_auto_across: shape.is_layout_vertical_auto(),
}
} else {
Self {
main_size: layout_bounds.height(),
across_size: layout_bounds.width(),
main_v: layout_bounds.vv(1.0),
across_v: layout_bounds.hv(1.0),
padding_main_start: layout_data.padding_top,
padding_main_end: layout_data.padding_bottom,
padding_across_start: layout_data.padding_left,
padding_across_end: layout_data.padding_right,
gap_main: layout_data.row_gap,
gap_across: layout_data.column_gap,
is_auto_main: shape.is_layout_vertical_auto(),
is_auto_across: shape.is_layout_horizontal_auto(),
}
}
}
}
#[derive(Debug, Copy, Clone)]
struct ChildAxis {
id: Uuid,
main_size: f32,
across_size: f32,
margin_main_start: f32,
margin_main_end: f32,
margin_across_start: f32,
margin_across_end: f32,
min_main_size: f32,
max_main_size: f32,
min_across_size: f32,
max_across_size: f32,
is_fill_main: bool,
is_fill_across: bool,
z_index: i32,
bounds: Bounds,
}
impl ChildAxis {
fn new(child: &Shape, child_bounds: &Bounds, flex_data: &FlexData) -> Self {
let id = child.id;
let layout_item = child.layout_item;
let mut result = if flex_data.is_row() {
Self {
id,
main_size: child_bounds.width(),
across_size: child_bounds.height(),
margin_main_start: layout_item.map(|i| i.margin_left).unwrap_or(0.0),
margin_main_end: layout_item.map(|i| i.margin_right).unwrap_or(0.0),
margin_across_start: layout_item.map(|i| i.margin_top).unwrap_or(0.0),
margin_across_end: layout_item.map(|i| i.margin_bottom).unwrap_or(0.0),
min_main_size: layout_item.and_then(|i| i.min_w).unwrap_or(MIN_SIZE),
max_main_size: layout_item.and_then(|i| i.max_w).unwrap_or(MAX_SIZE),
min_across_size: layout_item.and_then(|i| i.min_h).unwrap_or(MIN_SIZE),
max_across_size: layout_item.and_then(|i| i.max_h).unwrap_or(MAX_SIZE),
is_fill_main: child.is_layout_horizontal_fill(),
is_fill_across: child.is_layout_vertical_fill(),
z_index: layout_item.map(|i| i.z_index).unwrap_or(0),
bounds: *child_bounds,
}
} else {
Self {
id,
across_size: child_bounds.width(),
main_size: child_bounds.height(),
margin_across_start: layout_item.map(|i| i.margin_left).unwrap_or(0.0),
margin_across_end: layout_item.map(|i| i.margin_right).unwrap_or(0.0),
margin_main_start: layout_item.map(|i| i.margin_top).unwrap_or(0.0),
margin_main_end: layout_item.map(|i| i.margin_bottom).unwrap_or(0.0),
min_across_size: layout_item.and_then(|i| i.min_w).unwrap_or(MIN_SIZE),
max_across_size: layout_item.and_then(|i| i.max_w).unwrap_or(MAX_SIZE),
min_main_size: layout_item.and_then(|i| i.min_h).unwrap_or(MIN_SIZE),
max_main_size: layout_item.and_then(|i| i.max_h).unwrap_or(MAX_SIZE),
is_fill_main: child.is_layout_vertical_fill(),
is_fill_across: child.is_layout_horizontal_fill(),
z_index: layout_item.map(|i| i.z_index).unwrap_or(0),
bounds: *child_bounds,
}
};
if result.is_fill_main {
result.main_size = result.min_main_size;
}
if result.is_fill_across {
result.across_size = result.min_across_size;
}
result
}
}
fn initialize_tracks(
shape: &Shape,
layout_bounds: &Bounds,
layout_axis: &LayoutAxis,
flex_data: &FlexData,
shapes: &HashMap<Uuid, &mut Shape>,
bounds: &HashMap<Uuid, Bounds>,
structure: &HashMap<Uuid, Vec<StructureEntry>>,
) -> Vec<TrackData> {
let mut tracks = Vec::<TrackData>::new();
let mut current_track = TrackData::default();
let mut children = modified_children_ids(shape, structure.get(&shape.id));
let mut first = true;
if flex_data.is_reverse() {
children.reverse();
}
for child_id in children.iter() {
let Some(child) = shapes.get(child_id) else {
continue;
};
if child.is_absolute() || child.hidden() {
continue;
}
let default_bounds = bounds.find(child);
let child_bounds = layout_bounds
.box_bounds(&default_bounds)
.unwrap_or(default_bounds);
let child_axis = ChildAxis::new(child, &child_bounds, flex_data);
let child_main_size = child_axis.margin_main_start
+ child_axis.margin_main_end
+ if child_axis.is_fill_main {
child_axis.min_main_size
} else {
child_axis.main_size
};
let child_across_size = child_axis.margin_across_start
+ child_axis.margin_across_end
+ if child_axis.is_fill_across {
child_axis.min_across_size
} else {
child_axis.across_size
};
let child_max_across_size = if child_axis.is_fill_across {
child_axis.max_across_size
} else {
child_axis.across_size
};
let gap_main = if first { 0.0 } else { layout_axis.gap_main };
let next_main_size = current_track.main_size + child_main_size + gap_main;
if !layout_axis.is_auto_main
&& flex_data.is_wrap()
&& (next_main_size > layout_axis.main_space())
{
tracks.push(current_track);
current_track = TrackData {
main_size: child_main_size,
across_size: child_across_size,
shapes: Vec::from([child_axis]),
is_fill_across: child_axis.is_fill_across,
anchor: Point::default(),
max_across_size: child_max_across_size,
};
} else {
// Update current track
current_track.main_size = next_main_size;
current_track.across_size = f32::max(child_across_size, current_track.across_size);
current_track.shapes.push(child_axis);
current_track.is_fill_across =
current_track.is_fill_across || child_axis.is_fill_across;
current_track.max_across_size =
f32::max(current_track.max_across_size, child_max_across_size);
}
first = false;
}
// Finalize current track
tracks.push(current_track);
tracks
}
// Resize main axis fill
fn distribute_fill_main_space(layout_axis: &LayoutAxis, tracks: &mut [TrackData]) {
for track in tracks.iter_mut() {
let mut left_space = if layout_axis.is_auto_main {
0.0
} else {
layout_axis.main_space() - track.main_size
};
let mut to_resize_children: Vec<&mut ChildAxis> = Vec::new();
for child in track.shapes.iter_mut() {
if child.is_fill_main && child.main_size < child.max_main_size {
to_resize_children.push(child);
}
}
while left_space > MIN_SIZE && !to_resize_children.is_empty() {
let current = left_space / to_resize_children.len() as f32;
for i in (0..to_resize_children.len()).rev() {
let child = &mut to_resize_children[i];
let delta =
f32::min(child.max_main_size, child.main_size + current) - child.main_size;
child.main_size += delta;
left_space -= delta;
track.main_size += delta;
if (child.main_size - child.max_main_size).abs() < MIN_SIZE {
to_resize_children.remove(i);
}
}
}
}
}
fn distribute_fill_across_space(layout_axis: &LayoutAxis, tracks: &mut [TrackData]) {
let total_across_size = tracks.iter().map(|t| t.across_size).sum::<f32>()
+ (tracks.len() - 1) as f32 * layout_axis.gap_across;
let mut left_space = if layout_axis.is_auto_across {
0.0
} else {
layout_axis.across_space() - total_across_size
};
let mut to_resize_tracks: Vec<&mut TrackData> = Vec::new();
for track in tracks.iter_mut() {
if track.is_fill_across && track.across_size < track.max_across_size {
to_resize_tracks.push(track);
}
}
while left_space > MIN_SIZE && !to_resize_tracks.is_empty() {
let current = left_space / to_resize_tracks.len() as f32;
for i in (0..to_resize_tracks.len()).rev() {
let track = &mut to_resize_tracks[i];
let delta =
f32::min(track.max_across_size, track.across_size + current) - track.across_size;
track.across_size += delta;
left_space -= delta;
if (track.across_size - track.max_across_size).abs() < MIN_SIZE {
to_resize_tracks.remove(i);
}
}
}
// After assigning the across size to the tracks we can assing the size to the shapes
for track in tracks.iter_mut() {
if !track.is_fill_across {
continue;
}
for child in track.shapes.iter_mut() {
if child.is_fill_across {
let mut size =
track.across_size - child.margin_across_start - child.margin_across_end;
size = size.clamp(child.min_across_size, child.max_across_size);
child.across_size = size;
}
}
}
}
fn stretch_tracks_sizes(
layout_axis: &LayoutAxis,
tracks: &mut [TrackData],
total_across_size: f32,
) {
let total_across_size = total_across_size + (tracks.len() - 1) as f32 * layout_axis.gap_across;
let left_space = layout_axis.across_space() - total_across_size;
let delta = left_space / tracks.len() as f32;
for track in tracks.iter_mut() {
track.across_size += delta;
}
}
fn calculate_track_positions(
layout_data: &LayoutData,
layout_axis: &LayoutAxis,
layout_bounds: &Bounds,
tracks: &mut [TrackData],
total_across_size: f32,
) {
let mut align_content = &layout_data.align_content;
if layout_axis.is_auto_across {
align_content = &AlignContent::Start;
}
let total_across_size_gap: f32 =
total_across_size + (tracks.len() - 1) as f32 * layout_axis.gap_across;
let (real_margin, real_gap) = match align_content {
AlignContent::End => (
layout_axis.across_size - total_across_size_gap - layout_axis.padding_across_end,
layout_axis.gap_across,
),
AlignContent::Center => (
(layout_axis.across_size - total_across_size_gap) / 2.0,
layout_axis.gap_across,
),
AlignContent::SpaceBetween => (
layout_axis.padding_across_start,
f32::max(
layout_axis.gap_across,
(layout_axis.across_space() - total_across_size) / (tracks.len() - 1) as f32,
),
),
AlignContent::SpaceAround => {
let effective_gap =
(layout_axis.across_space() - total_across_size) / tracks.len() as f32;
(effective_gap / 2.0, effective_gap)
}
AlignContent::SpaceEvenly => {
let effective_gap =
(layout_axis.across_space() - total_across_size) / (tracks.len() + 1) as f32;
(
layout_axis.padding_across_start + effective_gap,
effective_gap,
)
}
_ => (layout_axis.padding_across_start, layout_axis.gap_across),
};
let mut next_anchor = layout_bounds.nw + layout_axis.across_v * real_margin;
for track in tracks.iter_mut() {
track.anchor = next_anchor;
next_anchor += layout_axis.across_v * real_gap;
}
}
fn calculate_track_data(
shape: &Shape,
layout_data: &LayoutData,
flex_data: &FlexData,
layout_bounds: &Bounds,
shapes: &HashMap<Uuid, &mut Shape>,
bounds: &HashMap<Uuid, Bounds>,
structure: &HashMap<Uuid, Vec<StructureEntry>>,
) -> Vec<TrackData> {
let layout_axis = LayoutAxis::new(shape, layout_bounds, layout_data, flex_data);
let mut tracks = initialize_tracks(
shape,
layout_bounds,
&layout_axis,
flex_data,
shapes,
bounds,
structure,
);
distribute_fill_main_space(&layout_axis, &mut tracks);
distribute_fill_across_space(&layout_axis, &mut tracks);
let total_across_size = tracks.iter().map(|t| t.across_size).sum::<f32>();
if !layout_axis.is_auto_across && layout_data.align_content == AlignContent::Stretch {
stretch_tracks_sizes(&layout_axis, &mut tracks, total_across_size);
}
calculate_track_positions(
layout_data,
&layout_axis,
layout_bounds,
&mut tracks,
total_across_size,
);
tracks
}
fn first_anchor(
layout_data: &LayoutData,
layout_axis: &LayoutAxis,
track: &TrackData,
total_shapes_size: f32,
) -> Point {
if layout_axis.is_auto_main {
return track.anchor + layout_axis.main_v * layout_axis.padding_main_start;
}
let delta = match layout_data.justify_content {
JustifyContent::Center => (layout_axis.main_size - track.main_size) / 2.0,
JustifyContent::End => {
layout_axis.main_size - layout_axis.padding_main_end - track.main_size
}
JustifyContent::SpaceAround => {
let effective_gap =
(layout_axis.main_space() - total_shapes_size) / (track.shapes.len()) as f32;
layout_axis.padding_main_end + f32::max(layout_axis.gap_main, effective_gap / 2.0)
}
JustifyContent::SpaceEvenly => {
let effective_gap =
(layout_axis.main_space() - total_shapes_size) / (track.shapes.len() + 1) as f32;
layout_axis.padding_main_end + f32::max(layout_axis.gap_main, effective_gap)
}
_ => layout_axis.padding_main_start,
};
track.anchor + layout_axis.main_v * delta
}
fn next_anchor(
layout_data: &LayoutData,
layout_axis: &LayoutAxis,
child_axis: &ChildAxis,
track: &TrackData,
prev_anchor: Point,
total_shapes_size: f32,
) -> Point {
if layout_axis.is_auto_main {
let delta = child_axis.margin_main_start
+ child_axis.margin_main_end
+ child_axis.main_size
+ layout_axis.gap_main;
return prev_anchor + layout_axis.main_v * delta;
}
let delta = child_axis.margin_main_start
+ child_axis.margin_main_end
+ match layout_data.justify_content {
JustifyContent::SpaceBetween => {
let effective_gap = (layout_axis.main_space() - total_shapes_size)
/ (track.shapes.len() - 1) as f32;
child_axis.main_size + f32::max(layout_axis.gap_main, effective_gap)
}
JustifyContent::SpaceAround => {
let effective_gap =
(layout_axis.main_space() - total_shapes_size) / (track.shapes.len()) as f32;
child_axis.main_size + f32::max(layout_axis.gap_main, effective_gap)
}
JustifyContent::SpaceEvenly => {
let effective_gap = (layout_axis.main_space() - total_shapes_size)
/ (track.shapes.len() + 1) as f32;
child_axis.main_size + f32::max(layout_axis.gap_main, effective_gap)
}
_ => child_axis.main_size + layout_axis.gap_main,
};
prev_anchor + layout_axis.main_v * delta
}
fn child_position(
child: &Shape,
shape_anchor: Point,
layout_data: &LayoutData,
layout_axis: &LayoutAxis,
child_axis: &ChildAxis,
track: &TrackData,
) -> Point {
let delta = child_axis.margin_across_start
+ match child.layout_item {
Some(LayoutItem {
align_self: Some(align_self),
..
}) => match align_self {
AlignSelf::Center => (track.across_size - child_axis.across_size) / 2.0,
AlignSelf::End => track.across_size - child_axis.across_size,
_ => 0.0,
},
_ => match layout_data.align_items {
AlignItems::Center => (track.across_size - child_axis.across_size) / 2.0,
AlignItems::End => track.across_size - child_axis.across_size,
_ => 0.0,
},
};
shape_anchor + layout_axis.main_v * child_axis.margin_main_start + layout_axis.across_v * delta
}
pub fn reflow_flex_layout(
shape: &Shape,
layout_data: &LayoutData,
flex_data: &FlexData,
shapes: &HashMap<Uuid, &mut Shape>,
bounds: &mut HashMap<Uuid, Bounds>,
structure: &HashMap<Uuid, Vec<StructureEntry>>,
) -> VecDeque<Modifier> {
let mut result = VecDeque::new();
let layout_bounds = &bounds.find(shape);
let layout_axis = LayoutAxis::new(shape, layout_bounds, layout_data, flex_data);
let tracks = calculate_track_data(
shape,
layout_data,
flex_data,
layout_bounds,
shapes,
bounds,
structure,
);
for track in tracks.iter() {
let total_shapes_size = track.shapes.iter().map(|s| s.main_size).sum::<f32>();
let mut shape_anchor = first_anchor(layout_data, &layout_axis, track, total_shapes_size);
for child_axis in track.shapes.iter() {
let child_id = child_axis.id;
let Some(child) = shapes.get(&child_id) else {
continue;
};
let position = child_position(
child,
shape_anchor,
layout_data,
&layout_axis,
child_axis,
track,
);
let child_bounds = &child_axis.bounds;
let delta_v = Vector::new_points(&child_bounds.nw, &position);
let (new_width, new_height) = if flex_data.is_row() {
(child_axis.main_size, child_axis.across_size)
} else {
(child_axis.across_size, child_axis.main_size)
};
let mut transform = Matrix::default();
if (new_width - child_bounds.width()).abs() > MIN_SIZE
|| (new_height - child_bounds.height()).abs() > MIN_SIZE
{
transform.post_concat(&math::resize_matrix(
layout_bounds,
child_bounds,
new_width,
new_height,
));
}
if delta_v.x.abs() > MIN_SIZE || delta_v.y.abs() > MIN_SIZE {
transform.post_concat(&Matrix::translate(delta_v));
}
result.push_back(Modifier::transform(child.id, transform));
shape_anchor = next_anchor(
layout_data,
&layout_axis,
child_axis,
track,
shape_anchor,
total_shapes_size,
);
}
}
if layout_axis.is_auto_across || layout_axis.is_auto_main {
let width = layout_bounds.width();
let height = layout_bounds.height();
let auto_across_size = if layout_axis.is_auto_across {
tracks.iter().map(|track| track.across_size).sum::<f32>()
+ (tracks.len() - 1) as f32 * layout_axis.gap_across
+ layout_axis.padding_across_start
+ layout_axis.padding_across_end
} else {
0.0
};
let auto_main_size = if layout_axis.is_auto_main {
tracks
.iter()
.map(|track| {
track.shapes.iter().map(|s| s.main_size).sum::<f32>()
+ (track.shapes.len() - 1) as f32 * layout_axis.gap_main
})
.reduce(f32::max)
.unwrap_or(0.01)
+ layout_axis.padding_main_start
+ layout_axis.padding_main_end
} else {
0.0
};
let (scale_width, scale_height) = if flex_data.is_row() {
(
if layout_axis.is_auto_main {
auto_main_size / width
} else {
1.0
},
if layout_axis.is_auto_across {
auto_across_size / height
} else {
1.0
},
)
} else {
(
if layout_axis.is_auto_across {
auto_across_size / width
} else {
1.0
},
if layout_axis.is_auto_main {
auto_main_size / height
} else {
1.0
},
)
};
let parent_transform = layout_bounds.transform_matrix().unwrap_or_default();
let parent_transform_inv = &parent_transform.invert().unwrap();
let origin = parent_transform_inv.map_point(layout_bounds.nw);
let mut scale = Matrix::scale((scale_width, scale_height));
scale.post_translate(origin);
scale.post_concat(&parent_transform);
scale.pre_translate(-origin);
scale.pre_concat(parent_transform_inv);
let layout_bounds_after = layout_bounds.transform(&scale);
result.push_back(Modifier::parent(shape.id, scale));
bounds.insert(shape.id, layout_bounds_after);
}
result
}