/**
 * Arc to Bezier curves transformer
 *
 * Is a modified and google closure compatible version of the a2c
 * functions by https://github.com/fontello/svgpath
 *
 * @author KALEIDOS INC
 * @license MIT License <https://opensource.org/licenses/MIT>
 */

"use strict";

goog.provide("common_tests.arc_to_bezier");

// https://raw.githubusercontent.com/fontello/svgpath/master/lib/a2c.js
goog.scope(function() {
  const self = common_tests.arc_to_bezier;

  var TAU = Math.PI * 2;

  /* eslint-disable space-infix-ops */

  // Calculate an angle between two unit vectors
  //
  // Since we measure angle between radii of circular arcs,
  // we can use simplified math (without length normalization)
  //
  function unit_vector_angle(ux, uy, vx, vy) {
    var sign = (ux * vy - uy * vx < 0) ? -1 : 1;
    var dot  = ux * vx + uy * vy;

    // Add this to work with arbitrary vectors:
    // dot /= Math.sqrt(ux * ux + uy * uy) * Math.sqrt(vx * vx + vy * vy);

    // rounding errors, e.g. -1.0000000000000002 can screw up this
    if (dot >  1.0) { dot =  1.0; }
    if (dot < -1.0) { dot = -1.0; }

    return sign * Math.acos(dot);
  }


  // Convert from endpoint to center parameterization,
  // see http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
  //
  // Return [cx, cy, theta1, delta_theta]
  //
  function get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi) {
    // Step 1.
    //
    // Moving an ellipse so origin will be the middlepoint between our two
    // points. After that, rotate it to line up ellipse axes with coordinate
    // axes.
    //
    var x1p =  cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2;
    var y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2;

    var rx_sq  =  rx * rx;
    var ry_sq  =  ry * ry;
    var x1p_sq = x1p * x1p;
    var y1p_sq = y1p * y1p;

    // Step 2.
    //
    // Compute coordinates of the centre of this ellipse (cx', cy')
    // in the new coordinate system.
    //
    var radicant = (rx_sq * ry_sq) - (rx_sq * y1p_sq) - (ry_sq * x1p_sq);

    if (radicant < 0) {
      // due to rounding errors it might be e.g. -1.3877787807814457e-17
      radicant = 0;
    }

    radicant /=   (rx_sq * y1p_sq) + (ry_sq * x1p_sq);
    radicant = Math.sqrt(radicant) * (fa === fs ? -1 : 1);

    var cxp = radicant *  rx/ry * y1p;
    var cyp = radicant * -ry/rx * x1p;

    // Step 3.
    //
    // Transform back to get centre coordinates (cx, cy) in the original
    // coordinate system.
    //
    var cx = cos_phi*cxp - sin_phi*cyp + (x1+x2)/2;
    var cy = sin_phi*cxp + cos_phi*cyp + (y1+y2)/2;

    // Step 4.
    //
    // Compute angles (theta1, delta_theta).
    //
    var v1x =  (x1p - cxp) / rx;
    var v1y =  (y1p - cyp) / ry;
    var v2x = (-x1p - cxp) / rx;
    var v2y = (-y1p - cyp) / ry;

    var theta1 = unit_vector_angle(1, 0, v1x, v1y);
    var delta_theta = unit_vector_angle(v1x, v1y, v2x, v2y);

    if (fs === 0 && delta_theta > 0) {
      delta_theta -= TAU;
    }
    if (fs === 1 && delta_theta < 0) {
      delta_theta += TAU;
    }

    return [ cx, cy, theta1, delta_theta ];
  }

  //
  // Approximate one unit arc segment with bézier curves,
  // see http://math.stackexchange.com/questions/873224
  //
  function approximate_unit_arc(theta1, delta_theta) {
    var alpha = 4/3 * Math.tan(delta_theta/4);

    var x1 = Math.cos(theta1);
    var y1 = Math.sin(theta1);
    var x2 = Math.cos(theta1 + delta_theta);
    var y2 = Math.sin(theta1 + delta_theta);

    return [ x1, y1, x1 - y1*alpha, y1 + x1*alpha, x2 + y2*alpha, y2 - x2*alpha, x2, y2 ];
  }

  function a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi) {
    var sin_phi = Math.sin(phi * TAU / 360);
    var cos_phi = Math.cos(phi * TAU / 360);

    // Make sure radii are valid
    //
    var x1p =  cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2;
    var y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2;

    if (x1p === 0 && y1p === 0) {
      // we're asked to draw line to itself
      return [];
    }

    if (rx === 0 || ry === 0) {
      // one of the radii is zero
      return [];
    }


    // Compensate out-of-range radii
    //
    rx = Math.abs(rx);
    ry = Math.abs(ry);

    var lambda = (x1p * x1p) / (rx * rx) + (y1p * y1p) / (ry * ry);
    if (lambda > 1) {
      rx *= Math.sqrt(lambda);
      ry *= Math.sqrt(lambda);
    }


    // Get center parameters (cx, cy, theta1, delta_theta)
    //
    var cc = get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi);


    var result = [];
    var theta1 = cc[2];
    var delta_theta = cc[3];



    // Split an arc to multiple segments, so each segment
    // will be less than τ/4 (= 90°)
    //
    var segments = Math.max(Math.ceil(Math.abs(delta_theta) / (TAU / 4)), 1);
    delta_theta /= segments;


    for (var i = 0; i < segments; i++) {
      var item = approximate_unit_arc(theta1, delta_theta);
      result.push(item);
      theta1 += delta_theta;
    }

    // We have a bezier approximation of a unit circle,
    // now need to transform back to the original ellipse
    //
    return result.map(function (curve) {
      for (var i = 0; i < curve.length; i += 2) {
        var x = curve[i + 0];
        var y = curve[i + 1];

        // scale
        x *= rx;
        y *= ry;

        // rotate
        var xp = cos_phi*x - sin_phi*y;
        var yp = sin_phi*x + cos_phi*y;

        // translate
        curve[i + 0] = xp + cc[0];
        curve[i + 1] = yp + cc[1];
      }

      return curve;
    });
  }

  self.a2c = a2c;
});