Add constraints calculation on WASM (#5894)

*  Add constraints calculation on WASM

*  Fix after review
This commit is contained in:
Alonso Torres 2025-02-19 10:40:04 +01:00 committed by GitHub
parent f5c913d26e
commit 6cb1aa24cd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 746 additions and 76 deletions

View file

@ -1,4 +1,330 @@
use skia_safe as skia;
use skia_safe::{Matrix, Point, Vector};
pub type Rect = skia::Rect;
pub type Point = (f32, f32);
pub trait VectorExt {
fn new_points(a: &Point, b: &Point) -> Vector;
}
impl VectorExt for Vector {
// Creates a vector from two points
fn new_points(from: &Point, to: &Point) -> Vector {
Vector::new(to.x - from.x, to.y - from.y)
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Bounds {
pub nw: Point,
pub ne: Point,
pub se: Point,
pub sw: Point,
}
fn vec_min_max(arr: &[Option<f32>]) -> Option<(f32, f32)> {
let mut minv: Option<f32> = None;
let mut maxv: Option<f32> = None;
for it in arr {
if let Some(it) = *it {
match minv {
None => minv = Some(it),
Some(n) => minv = Some(f32::min(it, n)),
}
match maxv {
None => maxv = Some(it),
Some(n) => maxv = Some(f32::max(it, n)),
}
}
}
Some((minv?, maxv?))
}
impl Bounds {
pub fn new(nw: Point, ne: Point, se: Point, sw: Point) -> Self {
Self { nw, ne, se, sw }
}
pub fn horizontal_vec(&self) -> Vector {
Vector::new_points(&self.nw, &self.ne)
}
pub fn vertical_vec(&self) -> Vector {
Vector::new_points(&self.nw, &self.sw)
}
pub fn hv(&self, scalar: f32) -> Vector {
let mut hv = self.horizontal_vec();
hv.normalize();
hv.scale(scalar);
hv
}
pub fn vv(&self, scalar: f32) -> Vector {
let mut vv = self.vertical_vec();
vv.normalize();
vv.scale(scalar);
vv
}
pub fn width(&self) -> f32 {
Point::distance(self.nw, self.ne)
}
pub fn height(&self) -> f32 {
Point::distance(self.nw, self.sw)
}
pub fn transform(&self, mtx: &Matrix) -> Self {
Self {
nw: mtx.map_point(self.nw),
ne: mtx.map_point(self.ne),
se: mtx.map_point(self.se),
sw: mtx.map_point(self.sw),
}
}
pub fn transform_mut(&mut self, mtx: &Matrix) {
self.nw = mtx.map_point(self.nw);
self.ne = mtx.map_point(self.ne);
self.se = mtx.map_point(self.se);
self.sw = mtx.map_point(self.sw);
}
pub fn box_bounds(&self, other: &Self) -> Option<Self> {
let hv = self.horizontal_vec();
let vv = self.vertical_vec();
let hr = Ray::new(self.nw, hv);
let vr = Ray::new(self.nw, vv);
let (min_ht, max_ht) = vec_min_max(&[
intersect_rays_t(&hr, &Ray::new(other.nw, vv)),
intersect_rays_t(&hr, &Ray::new(other.ne, vv)),
intersect_rays_t(&hr, &Ray::new(other.sw, vv)),
intersect_rays_t(&hr, &Ray::new(other.se, vv)),
])?;
let (min_vt, max_vt) = vec_min_max(&[
intersect_rays_t(&vr, &Ray::new(other.nw, hv)),
intersect_rays_t(&vr, &Ray::new(other.ne, hv)),
intersect_rays_t(&vr, &Ray::new(other.sw, hv)),
intersect_rays_t(&vr, &Ray::new(other.se, hv)),
])?;
let nw = intersect_rays(&Ray::new(hr.t(min_ht), vv), &Ray::new(vr.t(min_vt), hv))?;
let ne = intersect_rays(&Ray::new(hr.t(max_ht), vv), &Ray::new(vr.t(min_vt), hv))?;
let sw = intersect_rays(&Ray::new(hr.t(min_ht), vv), &Ray::new(vr.t(max_vt), hv))?;
let se = intersect_rays(&Ray::new(hr.t(max_ht), vv), &Ray::new(vr.t(max_vt), hv))?;
Some(Self { nw, ne, se, sw })
}
pub fn left(&self, p: Point) -> f32 {
let hr = Ray::new(p, self.horizontal_vec());
let vr = Ray::new(self.nw, self.vertical_vec());
if let Some(project_point) = intersect_rays(&hr, &vr) {
if vr.is_positive_side(&p) {
-Point::distance(project_point, p)
} else {
Point::distance(project_point, p)
}
} else {
// This should not happen. All points should have a proyection so the
// intersection ray should always exist
0.0
}
}
pub fn right(&self, p: Point) -> f32 {
let hr = Ray::new(p, self.horizontal_vec());
let vr = Ray::new(self.ne, self.vertical_vec());
if let Some(project_point) = intersect_rays(&hr, &vr) {
if vr.is_positive_side(&p) {
Point::distance(project_point, p)
} else {
-Point::distance(project_point, p)
}
} else {
// This should not happen. All points should have a proyection so the
// intersection ray should always exist
0.0
}
}
pub fn top(&self, p: Point) -> f32 {
let vr = Ray::new(p, self.vertical_vec());
let hr = Ray::new(self.nw, self.horizontal_vec());
if let Some(project_point) = intersect_rays(&vr, &hr) {
if hr.is_positive_side(&p) {
Point::distance(project_point, p)
} else {
-Point::distance(project_point, p)
}
} else {
// This should not happen. All points should have a proyection so the
// intersection ray should always exist
0.0
}
}
pub fn bottom(&self, p: Point) -> f32 {
let vr = Ray::new(p, self.vertical_vec());
let hr = Ray::new(self.sw, self.horizontal_vec());
if let Some(project_point) = intersect_rays(&vr, &hr) {
if hr.is_positive_side(&p) {
-Point::distance(project_point, p)
} else {
Point::distance(project_point, p)
}
} else {
// This should not happen. All points should have a proyection so the
// intersection ray should always exist
0.0
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub struct Ray {
origin: Point,
direction: Vector,
}
impl Ray {
pub fn new(origin: Point, direction: Vector) -> Self {
Self { origin, direction }
}
pub fn t(&self, t: f32) -> Point {
self.origin + self.direction * t
}
pub fn is_positive_side(&self, p: &Point) -> bool {
let a = self.direction.y;
let b = -self.direction.x;
let c = self.direction.x * self.origin.y - self.direction.y * self.origin.x;
let v = p.x * a + p.y * b + c;
v < 0.0
}
}
pub fn intersect_rays_t(ray1: &Ray, ray2: &Ray) -> Option<f32> {
let p1 = ray1.origin;
let d1 = ray1.direction;
let p2 = ray2.origin;
let d2 = ray2.direction;
// Calculate the determinant to check if the rays are parallel
let determinant = d1.cross(d2);
if determinant.abs() < f32::EPSILON {
// Parallel rays, no intersection
return None;
}
// Solve for t1 and t2 parameters
let diff = p2 - p1;
Some(diff.cross(d2) / determinant)
}
pub fn intersect_rays(ray1: &Ray, ray2: &Ray) -> Option<Point> {
if let Some(t) = intersect_rays_t(ray1, ray2) {
Some(ray1.t(t))
} else {
None
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_ray_parameter() {
let r = Ray::new(Point::new(0.0, 0.0), Vector::new(0.5, 0.5));
assert_eq!(r.t(1.0), Point::new(0.5, 0.5));
assert_eq!(r.t(2.0), Point::new(1.0, 1.0));
assert_eq!(r.t(-2.0), Point::new(-1.0, -1.0));
}
#[test]
fn test_intersect() {
// Test Cases for Ray-Ray Intersections
// Simple Intersection at (2, 2)
let r1 = Ray::new(Point::new(0.0, 0.0), Vector::new(1.0, 1.0));
let r2 = Ray::new(Point::new(0.0, 4.0), Vector::new(1.0, -1.0));
assert_eq!(intersect_rays(&r1, &r2), Some(Point::new(2.0, 2.0)));
// Parallel Rays (No Intersection)
let r1 = Ray::new(Point::new(0.0, 0.0), Vector::new(1.0, 1.0));
let r2 = Ray::new(Point::new(0.0, 2.0), Vector::new(1.0, 1.0));
assert_eq!(intersect_rays(&r1, &r2), None);
// Coincident Rays (Infinite Intersections)
let r1 = Ray::new(Point::new(0.0, 0.0), Vector::new(1.0, 1.0));
let r2 = Ray::new(Point::new(1.0, 1.0), Vector::new(1.0, 1.0));
assert_eq!(intersect_rays(&r1, &r2), None);
let r1 = Ray::new(Point::new(1.0, 0.0), Vector::new(2.0, 1.0));
let r2 = Ray::new(Point::new(4.0, 4.0), Vector::new(-1.0, -1.0));
assert_eq!(intersect_rays(&r1, &r2), Some(Point::new(-1.0, -1.0)));
let r1 = Ray::new(Point::new(1.0, 1.0), Vector::new(3.0, 2.0));
let r2 = Ray::new(Point::new(4.0, 0.0), Vector::new(-2.0, 3.0));
assert_eq!(
intersect_rays(&r1, &r2),
Some(Point::new(2.6153846, 2.0769231))
);
}
#[test]
fn test_vec_min_max() {
assert_eq!(None, vec_min_max(&[]));
assert_eq!(None, vec_min_max(&[None, None]));
assert_eq!(Some((1.0, 1.0)), vec_min_max(&[None, Some(1.0)]));
assert_eq!(
Some((0.0, 1.0)),
vec_min_max(&[Some(0.3), None, Some(0.0), Some(0.7), Some(1.0), Some(0.1)])
);
}
#[test]
fn test_box_bounds() {
let b1 = Bounds::new(
Point::new(1.0, 5.0),
Point::new(5.0, 5.0),
Point::new(5.0, 1.0),
Point::new(1.0, 1.0),
);
let b2 = Bounds::new(
Point::new(3.0, 4.0),
Point::new(4.0, 3.0),
Point::new(3.0, 2.0),
Point::new(2.0, 3.0),
);
let result = b1.box_bounds(&b2);
assert_eq!(
Some(Bounds::new(
Point::new(2.0, 4.0),
Point::new(4.0, 4.0),
Point::new(4.0, 2.0),
Point::new(2.0, 2.0),
)),
result
)
}
#[test]
fn test_bounds_distances() {
let b1 = Bounds::new(
Point::new(1.0, 10.0),
Point::new(8.0, 10.0),
Point::new(8.0, 1.0),
Point::new(1.0, 1.0),
);
assert_eq!(b1.left(Point::new(4.0, 8.0)), -3.0);
assert_eq!(b1.top(Point::new(4.0, 8.0)), -2.0);
assert_eq!(b1.right(Point::new(7.0, 6.0),), -1.0);
assert_eq!(b1.bottom(Point::new(7.0, 6.0),), -5.0);
}
}