mirror of
https://github.com/enzet/map-machine.git
synced 2025-04-28 17:57:11 +02:00
335 lines
11 KiB
Python
335 lines
11 KiB
Python
"""Special icon collections for documentation."""
|
|
import json
|
|
from dataclasses import dataclass, field
|
|
from pathlib import Path
|
|
from typing import Any, Optional, List, Dict, Set
|
|
|
|
import numpy as np
|
|
import svgwrite
|
|
from svgwrite import Drawing
|
|
from svgwrite.shapes import Line, Rect
|
|
from svgwrite.text import Text
|
|
|
|
from map_machine.map_configuration import MapConfiguration
|
|
from map_machine.osm.osm_reader import Tags
|
|
from map_machine.pictogram.icon import ShapeExtractor, IconSet
|
|
from map_machine.scheme import Scheme
|
|
from map_machine.workspace import Workspace
|
|
|
|
WORKSPACE: Workspace = Workspace(Path("temp"))
|
|
|
|
SCHEME: Scheme = Scheme.from_file(WORKSPACE.DEFAULT_SCHEME_PATH)
|
|
EXTRACTOR: ShapeExtractor = ShapeExtractor(
|
|
WORKSPACE.ICONS_PATH, WORKSPACE.ICONS_CONFIG_PATH
|
|
)
|
|
MONOSPACE_FONTS: list[str] = [
|
|
"JetBrains Mono",
|
|
"Fira Code",
|
|
"Fira Mono",
|
|
"ui-monospace",
|
|
"SFMono-regular",
|
|
"SF Mono",
|
|
"Menlo",
|
|
"Consolas",
|
|
"Liberation Mono",
|
|
"monospace",
|
|
]
|
|
|
|
|
|
@dataclass
|
|
class Collection:
|
|
"""Icon collection."""
|
|
|
|
# Core tags.
|
|
tags: Tags
|
|
|
|
# Tag key to be used in rows.
|
|
row_key: Optional[str] = None
|
|
|
|
# List of tag values to be used in rows.
|
|
row_values: List[str] = field(default_factory=list)
|
|
|
|
# Tag key to be used in columns.
|
|
column_key: Optional[str] = None
|
|
|
|
# List of tag values to be used in columns.
|
|
column_values: List[str] = field(default_factory=list)
|
|
|
|
# List of tags to be used in rows.
|
|
row_tags: List[Tags] = field(default_factory=list)
|
|
|
|
@classmethod
|
|
def deserialize(cls, structure: Dict[str, Any]):
|
|
"""Deserialize icon collection from structure."""
|
|
row_key: Optional[str] = (
|
|
structure["row_key"] if "row_key" in structure else None
|
|
)
|
|
row_values: List[str] = (
|
|
structure["row_values"] if "row_values" in structure else []
|
|
)
|
|
column_key: Optional[str] = (
|
|
structure["column_key"] if "column_key" in structure else None
|
|
)
|
|
column_values: List[str] = (
|
|
structure["column_values"] if "column_values" in structure else []
|
|
)
|
|
row_tags: List[Tags] = (
|
|
structure["row_tags"] if "row_tags" in structure else []
|
|
)
|
|
return cls(
|
|
structure["tags"],
|
|
row_key,
|
|
row_values,
|
|
column_key,
|
|
column_values,
|
|
row_tags,
|
|
)
|
|
|
|
|
|
class SVGTable:
|
|
"""SVG table with icon combinations."""
|
|
|
|
def __init__(self, collection: Collection, svg: svgwrite.Drawing):
|
|
self.collection: Collection = collection
|
|
self.svg: svgwrite.Drawing = svg
|
|
|
|
self.border: np.ndarray = np.array((16.0, 16.0))
|
|
self.step: float = 48.0
|
|
self.icon_size: float = 32.0
|
|
self.font_size: float = 10.0
|
|
self.offset: float = 30.0
|
|
self.half_step: np.ndarray = np.array(
|
|
(self.step / 2.0, self.step / 2.0)
|
|
)
|
|
self.font: str = ",".join(MONOSPACE_FONTS)
|
|
self.font_width: float = self.font_size * 0.7
|
|
|
|
self.size: List[float] = [
|
|
max(
|
|
max(map(len, self.collection.row_values)) * self.font_width,
|
|
len(self.collection.row_key) * self.font_width
|
|
+ (self.offset if self.collection.column_values else 0),
|
|
170.0,
|
|
)
|
|
if self.collection.row_values
|
|
else 0.0,
|
|
max(map(len, self.collection.column_values)) * self.font_width
|
|
if self.collection.column_values
|
|
else 0.0,
|
|
]
|
|
self.start_point: np.ndarray = (
|
|
2 * self.border + np.array(self.size) + self.half_step
|
|
)
|
|
|
|
def draw_table(self) -> None:
|
|
"""Draw SVG table."""
|
|
self.draw_rows()
|
|
self.draw_columns()
|
|
self.draw_delimiter()
|
|
self.draw_rectangle()
|
|
|
|
for i, row_value in enumerate(self.collection.row_values):
|
|
for j, column_value in enumerate(
|
|
(
|
|
self.collection.column_values
|
|
if self.collection.column_values
|
|
else [""]
|
|
)
|
|
):
|
|
current_tags: Tags = dict(self.collection.tags) | {
|
|
self.collection.row_key: row_value
|
|
}
|
|
if column_value:
|
|
current_tags |= {self.collection.column_key: column_value}
|
|
processed: Set[str] = set()
|
|
icon, _ = MapConfiguration(SCHEME).get_icon(
|
|
EXTRACTOR, current_tags, processed
|
|
)
|
|
processed = icon.processed
|
|
if not icon:
|
|
print("Icon was not constructed.")
|
|
|
|
if (
|
|
icon.main_icon
|
|
and not icon.main_icon.is_default()
|
|
and (
|
|
not self.collection.column_key
|
|
or not column_value
|
|
or (self.collection.column_key in processed)
|
|
)
|
|
and (
|
|
not self.collection.row_key
|
|
or not row_value
|
|
or (self.collection.row_key in processed)
|
|
)
|
|
):
|
|
self.draw_icon(np.array((j, i)), icon)
|
|
else:
|
|
self.draw_cross(np.array((j, i)))
|
|
|
|
width, height = self.get_size()
|
|
self.svg.elements.insert(
|
|
0, self.svg.rect((0, 0), (width, height), fill="white")
|
|
)
|
|
self.svg.update({"width": width, "height": height})
|
|
|
|
def draw_rows(self) -> None:
|
|
"""Draw row texts."""
|
|
point: np.ndarray = np.array(self.start_point) - np.array(
|
|
(self.step / 2.0 + self.border[0], 0.0)
|
|
)
|
|
shift: np.ndarray = (
|
|
-self.offset if self.collection.column_values else 0.9,
|
|
2.0 - self.step / 2.0 - self.border[1],
|
|
)
|
|
if self.collection.row_key:
|
|
self.draw_text(
|
|
f"{self.collection.row_key}=*",
|
|
point + np.array(shift),
|
|
anchor="end",
|
|
weight="bold",
|
|
)
|
|
for row_value in self.collection.row_values:
|
|
if row_value:
|
|
self.draw_text(
|
|
row_value, point + np.array((0.0, 2.0)), anchor="end"
|
|
)
|
|
point += np.array((0, self.step))
|
|
|
|
def draw_columns(self) -> None:
|
|
"""Draw column texts."""
|
|
point: np.ndarray = (
|
|
self.start_point
|
|
- self.half_step
|
|
- self.border
|
|
+ np.array((0.0, 2.0 - self.offset))
|
|
)
|
|
if self.collection.column_key:
|
|
self.draw_text(
|
|
f"{self.collection.column_key}=*",
|
|
point,
|
|
anchor="end",
|
|
weight="bold",
|
|
)
|
|
|
|
point = np.array(self.start_point)
|
|
for column_value in self.collection.column_values:
|
|
text_point: np.ndarray = point + np.array(
|
|
(2.0, -self.step / 2.0 - self.border[1])
|
|
)
|
|
self.draw_text(f"{column_value}", text_point, rotate=True)
|
|
point += np.array((self.step, 0.0))
|
|
|
|
def draw_delimiter(self) -> None:
|
|
"""Draw line between column and row titles."""
|
|
if self.collection.column_values:
|
|
line: Line = self.svg.line(
|
|
self.start_point - self.half_step - self.border,
|
|
self.start_point
|
|
- self.half_step
|
|
- self.border
|
|
- np.array((15, 15)),
|
|
stroke_width=0.5,
|
|
stroke="black",
|
|
)
|
|
self.svg.add(line)
|
|
|
|
def draw_rectangle(self, color: str = "#FEA") -> None:
|
|
"""Draw rectangle beneath all cells."""
|
|
rectangle: Rect = self.svg.rect(
|
|
self.start_point - self.half_step,
|
|
np.array(
|
|
(
|
|
max(1, len(self.collection.column_values)),
|
|
len(self.collection.row_values),
|
|
)
|
|
)
|
|
* self.step,
|
|
fill=color,
|
|
)
|
|
self.svg.add(rectangle)
|
|
|
|
def draw_icon(self, position: np.ndarray, icon: IconSet) -> None:
|
|
"""Draw icon in the table cell."""
|
|
if not self.collection.column_values:
|
|
self.collection.column_values = [""]
|
|
point: np.ndarray = np.array(self.start_point) + position * self.step
|
|
icon.main_icon.draw(self.svg, point, scale=self.icon_size / 16.0)
|
|
|
|
def draw_text(
|
|
self,
|
|
text: str,
|
|
point: np.ndarray,
|
|
anchor: str = "start",
|
|
weight: str = "normal",
|
|
rotate: bool = False,
|
|
) -> None:
|
|
"""Draw text on the table."""
|
|
text: Text = self.svg.text(
|
|
text,
|
|
point,
|
|
font_family=self.font,
|
|
font_size=self.font_size,
|
|
text_anchor=anchor,
|
|
font_weight=weight,
|
|
)
|
|
if rotate:
|
|
text.update({"transform": f"rotate(270,{point[0]},{point[1]})"})
|
|
self.svg.add(text)
|
|
|
|
def draw_cross(self, position: np.ndarray, size: float = 15) -> None:
|
|
"""Draw cross in the cell."""
|
|
point: np.ndarray = self.start_point + position * self.step
|
|
for vector in np.array((1, 1)), np.array((1, -1)):
|
|
line: Line = self.svg.line(
|
|
point - size * vector,
|
|
point + size * vector,
|
|
stroke_width=0.5,
|
|
stroke="black",
|
|
)
|
|
self.svg.add(line)
|
|
|
|
def get_size(self) -> np.ndarray:
|
|
"""Get the whole picture size."""
|
|
return (
|
|
self.start_point
|
|
+ np.array(
|
|
(
|
|
max(1, len(self.collection.column_values)),
|
|
len(self.collection.row_values),
|
|
)
|
|
)
|
|
* self.step
|
|
- self.half_step
|
|
+ self.border
|
|
)
|
|
|
|
|
|
def draw_svg_tables(output_path: Path, html_file_path: Path) -> None:
|
|
"""Draw SVG tables of icon collections."""
|
|
|
|
with (Path("data") / "collections.json").open() as input_file:
|
|
collections: List[Dict[str, Any]] = json.load(input_file)
|
|
|
|
with html_file_path.open("w+") as html_file:
|
|
for structure in collections:
|
|
if "id" not in structure:
|
|
continue
|
|
|
|
path: Path = output_path / f"{structure['id']}.svg"
|
|
svg: Drawing = svgwrite.Drawing(path.name)
|
|
|
|
collection: Collection = Collection.deserialize(structure)
|
|
|
|
table: SVGTable = SVGTable(collection, svg)
|
|
table.draw_table()
|
|
|
|
with path.open("w+") as output_file:
|
|
svg.write(output_file)
|
|
html_file.write(
|
|
f'<img src="{path}" style="border: 1px solid #DDD;" />\n'
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
draw_svg_tables(Path("doc"), Path("out") / "collections.html")
|