map-machine/roentgen/figure.py
2021-08-18 08:38:33 +03:00

400 lines
12 KiB
Python

"""
Figures displayed on the map.
"""
from typing import Any, Dict, List, Optional
import numpy as np
from colour import Color
from svgwrite import Drawing
from svgwrite.path import Path
from roentgen.direction import Sector, DirectionSet
from roentgen.flinger import Flinger
from roentgen.osm_reader import OSMNode, Tagged
from roentgen.road import Lane
from roentgen.scheme import LineStyle, RoadMatcher, Scheme
__author__ = "Sergey Vartanov"
__email__ = "me@enzet.ru"
class Figure(Tagged):
"""
Some figure on the map: way or area.
"""
def __init__(
self,
tags: Dict[str, str],
inners: List[List[OSMNode]],
outers: List[List[OSMNode]],
):
super().__init__()
self.tags: Dict[str, str] = tags
self.inners: List[List[OSMNode]] = []
self.outers: List[List[OSMNode]] = []
for inner_nodes in inners:
self.inners.append(make_clockwise(inner_nodes))
for outer_nodes in outers:
self.outers.append(make_counter_clockwise(outer_nodes))
def get_path(
self, flinger: Flinger, shift: np.array = np.array((0, 0))
) -> str:
"""
Get SVG path commands.
:param flinger: converter for geo coordinates
:param shift: shift vector
"""
path: str = ""
for outer_nodes in self.outers:
path += f"{get_path(outer_nodes, shift, flinger)} "
for inner_nodes in self.inners:
path += f"{get_path(inner_nodes, shift, flinger)} "
return path
class Building(Figure):
"""
Building on the map.
"""
def __init__(
self,
tags: Dict[str, str],
inners: List[List[OSMNode]],
outers: List[List[OSMNode]],
flinger: Flinger,
scheme: Scheme,
):
super().__init__(tags, inners, outers)
style: Dict[str, Any] = {
"fill": scheme.get_color("building_color").hex,
"stroke": scheme.get_color("building_border_color").hex,
}
self.line_style = LineStyle(style)
self.parts = []
for nodes in self.inners + self.outers:
for i in range(len(nodes) - 1):
flung_1: np.array = flinger.fling(nodes[i].coordinates)
flung_2: np.array = flinger.fling(nodes[i + 1].coordinates)
self.parts.append(Segment(flung_1, flung_2))
self.parts = sorted(self.parts)
self.height: float = 8.0
self.min_height: float = 0.0
levels: Optional[str] = self.get_float("building:levels")
if levels:
self.height = float(levels) * 2.5
levels: Optional[str] = self.get_float("building:min_level")
if levels:
self.min_height = float(levels) * 2.5
height: Optional[float] = self.get_length("height")
if height:
self.height = height
height: Optional[float] = self.get_length("min_height")
if height:
self.min_height = height
def draw_shade(self, building_shade, flinger: Flinger) -> None:
"""Draw shade casted by the building."""
scale: float = flinger.get_scale() / 3.0
shift_1 = np.array((scale * self.min_height, 0))
shift_2 = np.array((scale * self.height, 0))
commands: str = self.get_path(flinger, shift_1)
path = Path(
d=commands, fill="#000000", stroke="#000000", stroke_width=1
)
building_shade.add(path)
for nodes in self.inners + self.outers:
for i in range(len(nodes) - 1):
flung_1 = flinger.fling(nodes[i].coordinates)
flung_2 = flinger.fling(nodes[i + 1].coordinates)
command = (
"M",
np.add(flung_1, shift_1),
"L",
np.add(flung_2, shift_1),
np.add(flung_2, shift_2),
np.add(flung_1, shift_2),
"Z",
)
path = Path(
command, fill="#000000", stroke="#000000", stroke_width=1
)
building_shade.add(path)
def draw_walls(
self, svg: Drawing, height: float, previous_height: float, scale: float
) -> None:
"""Draw building walls."""
shift_1 = [0, -previous_height * scale]
shift_2 = [0, -height * scale]
for segment in self.parts:
if height == 2:
fill = Color("#AAAAAA")
elif height == 4:
fill = Color("#C3C3C3")
else:
color_part: float = 0.8 + segment.angle * 0.2
fill = Color(rgb=(color_part, color_part, color_part))
command = (
"M",
segment.point_1 + shift_1,
"L",
segment.point_2 + shift_1,
segment.point_2 + shift_2,
segment.point_1 + shift_2,
segment.point_1 + shift_1,
"Z",
)
path = svg.path(
d=command,
fill=fill.hex,
stroke=fill.hex,
stroke_width=1,
stroke_linejoin="round",
)
svg.add(path)
def draw_roof(self, svg: Drawing, flinger: Flinger, scale: float):
"""Draw building roof."""
path: Path = Path(
d=self.get_path(flinger, np.array([0, -self.height * scale]))
)
path.update(self.line_style.style)
path.update({"stroke-linejoin": "round"})
svg.add(path)
class StyledFigure(Figure):
"""
Figure with stroke and fill style.
"""
def __init__(
self,
tags: Dict[str, str],
inners: List[List[OSMNode]],
outers: List[List[OSMNode]],
line_style: LineStyle,
):
super().__init__(tags, inners, outers)
self.line_style = line_style
class Road(Figure):
"""
Road or track on the map.
"""
def __init__(
self,
tags: Dict[str, str],
inners: List[List[OSMNode]],
outers: List[List[OSMNode]],
matcher: RoadMatcher,
):
super().__init__(tags, inners, outers)
self.matcher: RoadMatcher = matcher
self.width: Optional[float] = None
self.lanes: List[Lane] = []
if "lanes" in tags:
try:
self.width = int(tags["lanes"]) * 3.7
self.lanes = [Lane()] * int(tags["lanes"])
except ValueError:
pass
if "lanes:forward" in tags:
number = int(tags["lanes:forward"])
[x.set_forward(True) for x in self.lanes[-number:]]
if "lanes:backward" in tags:
number = int(tags["lanes:backward"])
[x.set_forward(False) for x in self.lanes[:number]]
if "width" in tags:
try:
self.width = float(tags["width"])
except ValueError:
pass
class Tree(Tagged):
"""
Tree on the map.
"""
def __init__(
self, tags: dict[str, str], coordinates: np.array, point: np.array
):
super().__init__(tags)
self.coordinates: np.array = coordinates
self.point: np.array = point
def draw(self, svg: Drawing, flinger: Flinger, scheme: Scheme):
"""Draw crown and trunk."""
scale: float = flinger.get_scale(self.coordinates)
radius: float
if "diameter_crown" in self.tags:
radius = float(self.tags["diameter_crown"]) / 2.0
else:
radius = 2.0
color: Color = scheme.get_color("evergreen_color")
svg.add(svg.circle(self.point, radius * scale, fill=color, opacity=0.3))
if "circumference" in self.tags:
radius: float = float(self.tags["circumference"]) / 2.0 / np.pi
svg.add(svg.circle(self.point, radius * scale, fill="#B89A74"))
class DirectionSector(Tagged):
"""
Sector that represents direction.
"""
def __init__(self, tags: dict[str, str], point):
super().__init__(tags)
self.point = point
def draw(self, svg: Drawing, scheme: Scheme):
"""Draw gradient sector."""
angle = None
is_revert_gradient: bool = False
if self.get_tag("man_made") == "surveillance":
direction = self.get_tag("camera:direction")
if "camera:angle" in self.tags:
angle = float(self.get_tag("camera:angle"))
if "angle" in self.tags:
angle = float(self.get_tag("angle"))
direction_radius: float = 25
direction_color: Color = scheme.get_color("direction_camera_color")
elif self.get_tag("traffic_sign") == "stop":
direction = self.get_tag("direction")
direction_radius: float = 25
direction_color: Color = Color("red")
else:
direction = self.get_tag("direction")
direction_radius: float = 50
direction_color: Color = scheme.get_color("direction_view_color")
is_revert_gradient = True
if not direction:
return
point = (self.point.astype(int)).astype(float)
if angle:
paths = [Sector(direction, angle).draw(point, direction_radius)]
else:
paths = DirectionSet(direction).draw(point, direction_radius)
for path in paths:
radial_gradient = svg.radialGradient(
center=point,
r=direction_radius,
gradientUnits="userSpaceOnUse",
)
gradient = svg.defs.add(radial_gradient)
if is_revert_gradient:
(
gradient
.add_stop_color(0, direction_color.hex, opacity=0)
.add_stop_color(1, direction_color.hex, opacity=0.7)
) # fmt: skip
else:
(
gradient
.add_stop_color(0, direction_color.hex, opacity=0.4)
.add_stop_color(1, direction_color.hex, opacity=0)
) # fmt: skip
path_element: Path = svg.path(
d=["M", point] + path + ["L", point, "Z"],
fill=gradient.get_paint_server(),
)
svg.add(path_element)
class Segment:
"""
Line segment.
"""
def __init__(self, point_1: np.array, point_2: np.array):
self.point_1: np.array = point_1
self.point_2: np.array = point_2
difference: np.array = point_2 - point_1
vector: np.array = difference / np.linalg.norm(difference)
self.angle: float = np.arccos(np.dot(vector, np.array((0, 1)))) / np.pi
def __lt__(self, other: "Segment") -> bool:
return (
((self.point_1 + self.point_2) / 2)[1]
< ((other.point_1 + other.point_2) / 2)[1]
) # fmt: skip
def is_clockwise(polygon: List[OSMNode]) -> bool:
"""
Return true if polygon nodes are in clockwise order.
:param polygon: list of OpenStreetMap nodes
"""
count: float = 0
for index, node in enumerate(polygon):
next_index: int = 0 if index == len(polygon) - 1 else index + 1
count += (polygon[next_index].coordinates[0] - node.coordinates[0]) * (
polygon[next_index].coordinates[1] + node.coordinates[1]
)
return count >= 0
def make_clockwise(polygon: List[OSMNode]) -> List[OSMNode]:
"""
Make polygon nodes clockwise.
:param polygon: list of OpenStreetMap nodes
"""
return polygon if is_clockwise(polygon) else list(reversed(polygon))
def make_counter_clockwise(polygon: List[OSMNode]) -> List[OSMNode]:
"""
Make polygon nodes counter-clockwise.
:param polygon: list of OpenStreetMap nodes
"""
return polygon if not is_clockwise(polygon) else list(reversed(polygon))
def get_path(nodes: List[OSMNode], shift: np.array, flinger: Flinger) -> str:
"""Construct SVG path commands from nodes."""
path: str = ""
prev_node: Optional[OSMNode] = None
for node in nodes:
flung = flinger.fling(node.coordinates) + shift
path += ("L" if prev_node else "M") + f" {flung[0]},{flung[1]} "
prev_node = node
if nodes[0] == nodes[-1]:
path += "Z"
else:
path = path[:-1]
return path