#!/usr/bin/env python """ Author: Sergey Vartanov (me@enzet.ru) """ import math import numpy as np class Flinger(object): """ Flinger. Coordinates repositioning. """ def __init__(self, minimum, maximum, target_minimum=None, target_maximum=None, ratio=None): self.minimum = minimum self.maximum = maximum if not target_minimum: target_minimum = [0, 0] if not target_maximum: target_maximum = maximum - minimum space = [0, 0] if ratio: if ratio == 'geo': ratio = math.sin((90.0 - ((self.maximum[1] + self.minimum[1]) / 2.0)) / 180.0 * math.pi) current_ratio = (self.maximum[0] - self.minimum[0]) * ratio / (self.maximum[1] - self.minimum[1]) target_ratio = (target_maximum[0] - target_minimum[0]) / (target_maximum[1] - target_minimum[1]) if current_ratio >= target_ratio: n = (target_maximum[0] - target_minimum[0]) / (maximum[0] - minimum[0]) / ratio space[1] = ((target_maximum[1] - target_minimum[1]) - (maximum[1] - minimum[1]) * n) / 2.0 space[0] = 0 else: n = (target_maximum[1] - target_minimum[1]) / (maximum[1] - minimum[1]) space[0] = ((target_maximum[0] - target_minimum[0]) - (maximum[0] - minimum[0]) * n) / 2.0 space[1] = 0 target_minimum[0] += space target_maximum[0] += space self.target_minimum = target_minimum self.target_maximum = target_maximum def fling(self, current): """ Fling current point to the surface. """ x = map_(current[0], self.minimum[0], self.maximum[0], self.target_minimum[0], self.target_maximum[0]) y = map_(current[1], self.minimum[1], self.maximum[1], self.target_minimum[1], self.target_maximum[1]) return [x, y] class Geo: def __init__(self, lat, lon): self.lat = lat self.lon = lon def __add__(self, other): return Geo(self.lat + other.lat, self.lon + other.lon) def __sub__(self, other): return Geo(self.lat - other.lat, self.lon - other.lon) def __repr__(self): return f"{self.lat}, {self.lon}" class GeoFlinger: def __init__(self, minimum, maximum, target_minimum=None, target_maximum=None): self.minimum = minimum self.maximum = maximum # Ratio is depended of latitude. It is always <= 1. # In one latitude degree is always 40 000 / 360 km. # In one current longitude degree is about 40 000 / 360 * ratio km. ratio = math.sin((90.0 - ((self.maximum.lat + self.minimum.lat) / 2.0)) / 180.0 * math.pi) # Longitude displayed as x. # Latitude displayed as y. # Ratio is x / y. space = [0, 0] current_ratio = (self.maximum.lon - self.minimum.lon) * ratio / (self.maximum.lat - self.minimum.lat) target_ratio = (target_maximum[0] - target_minimum[0]) / (target_maximum[1] - target_minimum[1]) if current_ratio >= target_ratio: n = (target_maximum[0] - target_minimum[0]) / (maximum.lon - minimum.lon) / ratio space[1] = ((target_maximum[1] - target_minimum[1]) - (maximum.lat - minimum.lat) * n) / 2.0 space[0] = 0 else: n = (target_maximum[1] - target_minimum[1]) / (maximum.lat - minimum.lat) * ratio space[0] = ((target_maximum[0] - target_minimum[0]) - (maximum.lon - minimum.lon) * n) / 2.0 space[1] = 0 self.target_minimum = np.add(target_minimum, space) self.target_maximum = np.subtract(target_maximum, space) self.space = space def fling(self, current): x = map_(current.lon, self.minimum.lon, self.maximum.lon, self.target_minimum[0], self.target_maximum[0]) y = map_(self.maximum.lat + self.minimum.lat - current.lat, self.minimum.lat, self.maximum.lat, self.target_minimum[1], self.target_maximum[1]) return [x, y] def map_(value, current_min, current_max, target_min, target_max): """ Map current value in bounds of current_min and current_max to bounds of target_min and target_max. """ return target_min + (value - current_min) / (current_max - current_min) * (target_max - target_min)