Meshroom/meshroom/nodes/blender/scripts/renderAnimatedCameraInBlender.py
Solal Depardieu f8141796f3 [nodes] Adding mesh render with edge detection and changes on the args
Added the possibility of rendering the output of the meshing node into a edge detection render of the obj. Added the activation and deactivation of the background images as an option. Improving the way the arguments are shown with a conditionnal display of some arguments.
2021-07-23 13:11:16 +02:00

405 lines
No EOL
21 KiB
Python

import bpy
import bmesh
import os
import re
import mathutils
import sys # to get command line args
import argparse # to parse options for us and print a nice help message
from distutils.util import strtobool
def main():
argv = sys.argv
if "--" not in argv:
argv = [] # as if no args are passed
else:
argv = argv[argv.index("--") + 1:] # get all args after "--"
# When --help or no args are given, print this help
usage_text = (
"Run blender in background mode with this script:"
" blender --background --python " + __file__ + " -- [options]"
)
parser = argparse.ArgumentParser(description=usage_text)
parser.add_argument(
"--sfMCameraPath", dest="SFM_cam_path", metavar='FILE', required=True,
help="This text will be used to render an image",
)
parser.add_argument(
"--useBackground", dest="Use_Background", type=strtobool, required=True,
help="Diplay the background image or not.",
)
parser.add_argument(
"--undistortedImages", dest="undisto_images", metavar='FILE', required=False,
help="Save the generated file to the specified path",
)
parser.add_argument(
"--sfMData", dest="SFM_Data", metavar='FILE', required=True,
help="These info carry the Point Cloud or mesh we need.",
)
#Point Cloud Arguments (When SFM Data is .abc)
parser.add_argument(
"--pointCloudDensity", dest="Point_Cloud_Density", type=float, required=False,
help="Number of point from the cloud rendered",
)
parser.add_argument(
"--particleSize", dest="Particle_Size", type=float, required=False,
help="Scale of every particle used to show the point cloud",
)
parser.add_argument(
"--particleColor", dest="Particle_Color", type=str, required=False,
help="Color of every particle used to show the point cloud (SFM Data is .abc)",
)
#Mesh Arguments (When SFM Data is .obj)
parser.add_argument(
"--edgeColor", dest="Edge_Color", type=str, required=False,
help="Color of the edges of the rendered object (SFM Data is .obj)",
)
#Output Arguments
parser.add_argument(
"--outputFormat", dest="Output_Format", type=str, required=True,
help="Format of the video output",
)
parser.add_argument(
"--outputPath", dest="output_path", metavar='FILE', required=True,
help="Render an image to the specified path",
)
args = parser.parse_args(argv)
if not argv:
parser.print_help()
return
if not args.undisto_images and args.Use_Background :
print("Error: --undisto_images argument not given, aborting.")
parser.print_help()
return
if not args.Point_Cloud_Density and args.SFM_Data.endswith('.abc'):
print("Error: --Point_Cloud_Density argument not given, aborting.")
parser.print_help()
return
if not args.Particle_Size and args.SFM_Data.endswith('.abc'):
print("Error: --Particle_Size argument not given, aborting.")
parser.print_help()
return
if not args.Particle_Color and args.SFM_Data.endswith('.abc'):
print("Error: --Particle_Color argument not given, aborting.")
parser.print_help()
return
if not args.Edge_Color and args.SFM_Data.endswith('.obj'):
print("Error: --Edge_Color argument not given, aborting.")
parser.print_help()
return
#Clear Current Scene
try:
for objects in bpy.data.objects:
bpy.data.objects.remove(objects)
except RuntimeError:
print("Error: While clearing current scene")
#The Switcher is the setting for most of the colors (if you want to add some, do it here and in the arguments of the node)
# Keep in mind that we use the same switcher for both the Edge Color and the Particle Color settings.
# So if you add a color to one of them in the node, might has well add it to the other.
switcher={
'Grey':(0.2, 0.2, 0.2, 1),
'White':(1, 1, 1, 1),
'Red':(0.5, 0, 0, 1),
'Green':(0, 0.5, 0, 1),
'Magenta':(1.0, 0, 0.75, 1)
}
# import Undistorted Images
undis_imgs = []
#Some of these variable will be very useful in the next steps keep them in mind
number_of_frame = 0
offset = 0
first_image_name = ""
try:
# In this part of the code we take the undistorted images and we process some info about them
# undis_imgs is the list of the images' names
# first_image_name says it all in the name
# The offset is important, it corresponds to the last part of the name of the first frame
# In most case it will hopefully be 0 but the sequence may start from a more advanced frame
if args.Use_Background :
files = os.listdir(args.undisto_images)
for f in files :
if f.endswith(".exr") and not f.__contains__("UVMap"):
undis_imgs.append({"name":f})
number_of_frame = len(undis_imgs)
first_image_name = undis_imgs[0]['name']
offset = int(re.findall(r'\d+', first_image_name)[-1]) - 1
except RuntimeError:
print("Error: while importing the undistorted images.")
#import abc (Animated Camera)
try:
# In this part of the code we import the alembic in the cam_path to get the animated camera
# We use cam_location and cam_obj to store information about this camera
# We look for a camera (of type 'Persp') with the name 'anim' (not to confuse them with previously imported cams)
# Once the cam has been found we select the main camera of the scene.
# The rest of the code is setting up the display of the background image,
# Since it's not a simple image but an image Sequence, we have to use the offset and the number of frame
# Information taken from the previous block of code.
# The frame method is the one that align with the Point Cloud althought this may change,
# so feel free to try out the two other settings if something changes on previous nodes.
# We also have to make the scene render film transparent because we want to be able to display
# our background afterward in the next block of code
bpy.ops.wm.alembic_import(filepath=args.SFM_cam_path)
animated_cams = bpy.context.selected_editable_objects[:]
cam_location = mathutils.Vector((0, 0, 0))
cam_obj = None
for obj in animated_cams:
if obj.data and obj.data.type == 'PERSP' and "anim" in obj.data.name:
bpy.context.scene.collection.objects.link(obj)
bpy.context.view_layer.objects.active = obj
bpy.context.scene.camera = obj
cam_location = obj.location
cam_obj = obj
if args.Use_Background :
bpy.ops.image.open(filepath=args.undisto_images + "/" + first_image_name, directory=args.undisto_images, files=undis_imgs, relative_path=True, show_multiview=False)
bpy.data.cameras[obj.data.name].background_images.new()
bpy.data.cameras[obj.data.name].show_background_images = True
bpy.data.cameras[obj.data.name].background_images[0].image = bpy.data.images[first_image_name]
bpy.data.cameras[obj.data.name].background_images[0].frame_method = 'CROP'
bpy.data.cameras[obj.data.name].background_images[0].image_user.frame_offset = offset
bpy.data.cameras[obj.data.name].background_images[0].image_user.frame_duration = number_of_frame
bpy.data.cameras[obj.data.name].background_images[0].image_user.frame_start = 1
bpy.context.scene.render.film_transparent = True
except RuntimeError:
print("Error: while importing the alembic file (Animated Camera).")
#Place the particle plane
try:
# This is a key step if you are displaying a Point Cloud.
# We are using a particle system later in the code to display the Point Cloud.
# To make it so, we need a model for the particle, a object that will be repeated a lot to make a shape.
# In order to do that we need a plane (one face only for optimisation purpose) that always face the camera.
# So we made a plane and made it a child (in the parenting system) of the camera. That way whenever the cam
# moves, the plane moves and turn accordingly.
# Bmesh creates the plane and put it into the mesh. We change the size of the plane according to
# the scale given in arguments. We need to adjust the plane's location because putting it at the
# exact location of the camera blocks the view. Then, the switcher gives a RGBA color according to
# the given argument. We have to use a material that uses 'Emission'
# otherwise the particle is going to react to lights and we don't really need that (the color wouldn't be clear).
# To do that we have to use the shader 'node_tree' we clear all links between nodes, create the emission node
# and connect it to the 'Material Output' node (which is what we will see in render).
# Finally we use the switcher to color the model.
plane = bpy.data.meshes.new('Plane')
objectsPlane = bpy.data.objects.new(name="Plane", object_data=plane)
bm = bmesh.new()
bmesh.ops.create_grid(bm, x_segments = 1, y_segments = 1, size = 1.0)
bm.to_mesh(plane)
bm.free()
if (args.SFM_Data.endswith('.abc')):
objectsPlane.scale = mathutils.Vector((args.Particle_Size, args.Particle_Size, args.Particle_Size))
cam_location.y += -2.0
objectsPlane.location = cam_location
bpy.context.scene.collection.objects.link(objectsPlane)
bpy.data.objects['Plane'].parent = cam_obj
bpy.context.view_layer.objects.active = objectsPlane
col = bpy.data.materials.new('Color')
objectsPlane.active_material = col
objectsPlane.active_material.use_nodes = True
objectsPlane.active_material.node_tree.links.clear()
objectsPlane.active_material.node_tree.nodes.new(type='ShaderNodeEmission')
objectsPlane.active_material.node_tree.links.new(objectsPlane.active_material.node_tree.nodes['Emission'].outputs['Emission'], objectsPlane.active_material.node_tree.nodes['Material Output'].inputs['Surface'])
if (args.SFM_Data.endswith('.abc')):
objectsPlane.active_material.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Particle_Color, 'Invalid Color')
except RuntimeError:
print("Error: while setting up the particle model.")
if (args.SFM_Data.endswith('.abc')):
# This part is all about importing the Point Cloud and setting up the Particle System.
# After importing the alembic, we look for a specific mesh in the file. Again the hardcoded name would be a
# problem if the previous nodes hadn't name it specificaly that (.001 because a mesh with the same name has
# been imported with the animated camera).
# Once the Point Cloud has been found. We make it the active object (important for the node_tree later).
# Then, we create a particle system on it. Render_type set to object and the said object is the plane,
# thanks to that the particle format is set to repeat the plane. Emit_from 'vert' so the points of the
# point cloud are the one rendering the particle.
# The count is the number of particle repeated on the point cloud. We use the rate given as arguments
# to give a number. Most of the following settings are just formalities but use_rotation and use_rotation_instance,
# those two make sure to use the same rotaion than the model (which is needed to have the particle always facing the camera).
#import abc (Point Cloud)
try:
bpy.ops.wm.alembic_import(filepath=args.SFM_Data)
all_abc_info = bpy.context.selected_editable_objects[:]
for obj in all_abc_info:
if obj.name == 'mvgPointCloud.001': #May have a problem with such hard code
bpy.context.scene.collection.objects.link(obj)
bpy.context.view_layer.objects.active = obj
obj.modifiers.new("ParticleSystem", "PARTICLE_SYSTEM")
particle_system = bpy.data.particles["ParticleSystem"]
particle_system.render_type = 'OBJECT'
particle_system.instance_object = bpy.data.objects["Plane"]
particle_system.emit_from = 'VERT'
if (args.SFM_Data.endswith('.abc')):
particle_system.count = int(args.Point_Cloud_Density * len(obj.data.vertices.values()))
particle_system.frame_end = 1.0
particle_system.use_emit_random = False
particle_system.particle_size = 0.02
particle_system.physics_type = 'NO'
particle_system.use_rotations = True
particle_system.use_rotation_instance = True
particle_system.rotation_mode = 'GLOB_X'
except RuntimeError:
print("Error: while importing the alembic file (Point Cloud).")
#Or import obj directly
# The import via obj needs a bit of work too. For showing an outline of the object, we need to add two materials to the mesh :
# Center and Edge, we are using a method that consists in having a "bold" effect on the Edge Material so we can see it
# around the Center material. We do that by using a Solidify Modifier on which we flip normals and reduce Thickness to bellow zero.
# The more the thickness get bellow zero, the more the egde will be largely revealed.
elif (args.SFM_Data.endswith('.obj')):
bpy.ops.import_scene.obj(filepath=args.SFM_Data)
center = bpy.data.materials.new('Center')
center.use_nodes = True
center.node_tree.links.clear()
center.node_tree.nodes.new(type='ShaderNodeEmission')
center.node_tree.links.new(center.node_tree.nodes['Emission'].outputs['Emission'], center.node_tree.nodes['Material Output'].inputs['Surface'])
center.node_tree.nodes['Emission'].inputs[0].default_value = (0,0,0,0)
if not args.Use_Background and args.SFM_Data.endswith('.obj'):
center.node_tree.nodes['Emission'].inputs[0].default_value = (0.05, 0.05, 0.05, 1) #Same Color as the no background color in blender
edge = bpy.data.materials.new('Edge')
edge.use_nodes = True
edge.node_tree.links.clear()
edge.node_tree.nodes.new(type='ShaderNodeEmission')
edge.use_backface_culling = True
edge.node_tree.links.new(edge.node_tree.nodes['Emission'].outputs['Emission'], edge.node_tree.nodes['Material Output'].inputs['Surface'])
edge.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Edge_Color, 'Invalid Color')
bpy.data.meshes['mesh'].materials.clear()
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Center'])
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Edge'])
print(bpy.data.meshes['mesh'].materials.values())
bpy.data.objects['mesh'].modifiers.new('New', type='SOLIDIFY')
bpy.data.objects['mesh'].modifiers["New"].thickness = -0.01
bpy.data.objects['mesh'].modifiers["New"].use_rim = False
bpy.data.objects['mesh'].modifiers["New"].use_flip_normals = True
bpy.data.objects['mesh'].modifiers["New"].material_offset = 1
else:
print("SFM_Data isn't in the right format, alembics(.abc) and object(.obj) only are supported")
#WE HAVE TO USE THE COMPOSITING GRAPH TO MAKE THE BACKGROUND IMAGE VISIBLE
# We setup all the nodes in the first place, even if we don't need them in our configuration. We put the setting in all of them.
# Only after having done that we can control which of the node we link in the graph according to the option we were given.
# If the SFM Data is a Mesh, its extension is .obj so we have to build the graph accordingly. If the Background image setting was activated,
# we need to include it in our node tree through the "Image" and Scale node.
try:
bpy.context.scene.use_nodes = True
#CREATE ALL NODES WE NEED (regardless of the options)
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeAlphaOver")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeScale")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeImage")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodePremulKey")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeMixRGB")
#SET THEM UP CORRECTLY (still regardless of the option)
bpy.data.scenes["Scene"].node_tree.nodes["Mix"].blend_type = 'LIGHTEN'
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_duration = number_of_frame
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_offset = offset
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].space = 'RENDER_SIZE'
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].frame_method = 'CROP'
#LINKS THE NODES THAT NEEDS TO BE LINKED
if args.Use_Background :
if args.SFM_Data.endswith('.obj'):
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
else:
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Over'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[1])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
else:
if args.SFM_Data.endswith('.obj'):
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
except RuntimeError:
print("Error: while composing the compositing graph.")
## Starts the rendering and launchs it with a blender animator player
try:
# Setup the render format and filepath
bpy.context.scene.render.image_settings.file_format = 'FFMPEG'
if args.Output_Format == 'mkv':
bpy.context.scene.render.ffmpeg.format = 'MKV'
elif args.Output_Format == 'avi':
bpy.context.scene.render.ffmpeg.format = 'AVI'
elif args.Output_Format == 'mov':
bpy.context.scene.render.ffmpeg.format = 'QUICKTIME'
else:
bpy.context.scene.render.ffmpeg.format = 'MPEG4'
bpy.context.scene.render.filepath = args.output_path + '/render.' + args.Output_Format
# Render everything on to the filepath
bpy.ops.render.render(animation=True)
# Starts a player automatically to play the output (Usefull for developpers to see what they do but it doesn't really have its place in a software)
# bpy.ops.render.play_rendered_anim()
except RuntimeError:
print("Error: while rendering the scene.")
if __name__ == "__main__":
main()