mirror of
https://github.com/alicevision/Meshroom.git
synced 2025-04-29 18:27:23 +02:00
375 lines
15 KiB
Python
375 lines
15 KiB
Python
__version__ = "2.0"
|
|
|
|
from meshroom.core import desc
|
|
|
|
|
|
class StructureFromMotion(desc.CommandLineNode):
|
|
commandLine = 'aliceVision_incrementalSfM {allParams}'
|
|
size = desc.DynamicNodeSize('input')
|
|
|
|
category = 'Sparse Reconstruction'
|
|
documentation = '''
|
|
This node will analyze feature matches to understand the geometric relationship behind all the 2D observations,
|
|
and infer the rigid scene structure (3D points) with the pose (position and orientation) and internal calibration of all cameras.
|
|
The pipeline is a growing reconstruction process (called incremental SfM): it first computes an initial two-view reconstruction that is iteratively extended by adding new views.
|
|
|
|
1/ Fuse 2-View Matches into Tracks
|
|
|
|
It fuses all feature matches between image pairs into tracks. Each track represents a candidate point in space, visible from multiple cameras.
|
|
However, at this step of the pipeline, it still contains many outliers.
|
|
|
|
2/ Initial Image Pair
|
|
|
|
It chooses the best initial image pair. This choice is critical for the quality of the final reconstruction.
|
|
It should indeed provide robust matches and contain reliable geometric information.
|
|
So, this image pair should maximize the number of matches and the repartition of the corresponding features in each image.
|
|
But at the same time, the angle between the cameras should also be large enough to provide reliable geometric information.
|
|
|
|
3/ Initial 2-View Geometry
|
|
|
|
It computes the fundamental matrix between the 2 images selected and consider that the first one is the origin of the coordinate system.
|
|
|
|
4/ Triangulate
|
|
|
|
Now with the pose of the 2 first cameras, it triangulates the corresponding 2D features into 3D points.
|
|
|
|
5/ Next Best View Selection
|
|
|
|
After that, it selects all the images that have enough associations with the features that are already reconstructed in 3D.
|
|
|
|
6/ Estimate New Cameras
|
|
|
|
Based on these 2D-3D associations it performs the resectioning of each of these new cameras.
|
|
The resectioning is a Perspective-n-Point algorithm (PnP) in a RANSAC framework to find the pose of the camera that validates most of the features associations.
|
|
On each camera, a non-linear minimization is performed to refine the pose.
|
|
|
|
7/ Triangulate
|
|
|
|
From these new cameras poses, some tracks become visible by 2 or more resected cameras and it triangulates them.
|
|
|
|
8/ Optimize
|
|
|
|
It performs a Bundle Adjustment to refine everything: extrinsics and intrinsics parameters of all cameras as well as the position of all 3D points.
|
|
It filters the results of the Bundle Adjustment by removing all observations that have high reprojection error or insufficient angles between observations.
|
|
|
|
9/ Loop from 5 to 9
|
|
|
|
As we have triangulated new points, we get more image candidates for next best views selection and we can iterate from 5 to 9.
|
|
It iterates like that, adding cameras and triangulating new 2D features into 3D points and removing 3D points that became invalidated, until we cannot localize new views.
|
|
|
|
## Online
|
|
[https://alicevision.org/#photogrammetry/sfm](https://alicevision.org/#photogrammetry/sfm)
|
|
'''
|
|
|
|
inputs = [
|
|
desc.File(
|
|
name='input',
|
|
label='SfMData',
|
|
description='SfMData file.',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.ListAttribute(
|
|
elementDesc=desc.File(
|
|
name="featuresFolder",
|
|
label="Features Folder",
|
|
description="",
|
|
value="",
|
|
uid=[0],
|
|
),
|
|
name="featuresFolders",
|
|
label="Features Folders",
|
|
description="Folder(s) containing the extracted features and descriptors."
|
|
),
|
|
desc.ListAttribute(
|
|
elementDesc=desc.File(
|
|
name="matchesFolder",
|
|
label="Matches Folder",
|
|
description="",
|
|
value="",
|
|
uid=[0],
|
|
),
|
|
name="matchesFolders",
|
|
label="Matches Folders",
|
|
description="Folder(s) in which computed matches are stored."
|
|
),
|
|
desc.ChoiceParam(
|
|
name='describerTypes',
|
|
label='Describer Types',
|
|
description='Describer types used to describe an image.',
|
|
value=['dspsift'],
|
|
values=['sift', 'sift_float', 'sift_upright', 'dspsift', 'akaze', 'akaze_liop', 'akaze_mldb', 'cctag3', 'cctag4', 'sift_ocv', 'akaze_ocv', 'tag16h5'],
|
|
exclusive=False,
|
|
uid=[0],
|
|
joinChar=',',
|
|
),
|
|
desc.ChoiceParam(
|
|
name='localizerEstimator',
|
|
label='Localizer Estimator',
|
|
description='Estimator type used to localize cameras (acransac, ransac, lsmeds, loransac, maxconsensus).',
|
|
value='acransac',
|
|
values=['acransac', 'ransac', 'lsmeds', 'loransac', 'maxconsensus'],
|
|
exclusive=True,
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.ChoiceParam(
|
|
name='observationConstraint',
|
|
label='Observation Constraint',
|
|
description='Observation constraint mode used in the optimization:\n'
|
|
' * Basic: Use standard reprojection error in pixel coordinates\n'
|
|
' * Scale: Use reprojection error in pixel coordinates but relative to the feature scale',
|
|
value='Scale',
|
|
values=['Basic', 'Scale'],
|
|
exclusive=True,
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.IntParam(
|
|
name='localizerEstimatorMaxIterations',
|
|
label='Localizer Max Ransac Iterations',
|
|
description='Maximum number of iterations allowed in ransac step.',
|
|
value=4096,
|
|
range=(1, 20000, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='localizerEstimatorError',
|
|
label='Localizer Max Ransac Error',
|
|
description='Maximum error (in pixels) allowed for camera localization (resectioning).\n'
|
|
'If set to 0, it will select a threshold according to the localizer estimator used\n'
|
|
'(if ACRansac, it will analyze the input data to select the optimal value).',
|
|
value=0.0,
|
|
range=(0.0, 100.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.BoolParam(
|
|
name='lockScenePreviouslyReconstructed',
|
|
label='Lock Scene Previously Reconstructed',
|
|
description='This option is useful for SfM augmentation. Lock previously reconstructed poses and intrinsics.',
|
|
value=False,
|
|
uid=[0],
|
|
),
|
|
desc.BoolParam(
|
|
name='useLocalBA',
|
|
label='Local Bundle Adjustment',
|
|
description='It reduces the reconstruction time, especially for large datasets (500+ images),\n'
|
|
'by avoiding computation of the Bundle Adjustment on areas that are not changing.',
|
|
value=True,
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='localBAGraphDistance',
|
|
label='LocalBA Graph Distance',
|
|
description='Graph-distance limit to define the Active region in the Local Bundle Adjustment strategy.',
|
|
value=1,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.IntParam(
|
|
name='maxNumberOfMatches',
|
|
label='Maximum Number of Matches',
|
|
description='Maximum number of matches per image pair (and per feature type). \n'
|
|
'This can be useful to have a quick reconstruction overview. \n'
|
|
'0 means no limit.',
|
|
value=0,
|
|
range=(0, 50000, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minNumberOfMatches',
|
|
label='Minimum Number of Matches',
|
|
description='Minimum number of matches per image pair (and per feature type). \n'
|
|
'This can be useful to have a meaningful reconstruction with accurate keypoints. 0 means no limit.',
|
|
value=0,
|
|
range=(0, 50000, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minInputTrackLength',
|
|
label='Min Input Track Length',
|
|
description='Minimum track length in input of SfM',
|
|
value=2,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minNumberOfObservationsForTriangulation',
|
|
label='Min Observation For Triangulation',
|
|
description='Minimum number of observations to triangulate a point.\n'
|
|
'Set it to 3 (or more) reduces drastically the noise in the point cloud,\n'
|
|
'but the number of final poses is a little bit reduced\n'
|
|
'(from 1.5% to 11% on the tested datasets).',
|
|
value=2,
|
|
range=(2, 10, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='minAngleForTriangulation',
|
|
label='Min Angle For Triangulation',
|
|
description='Minimum angle for triangulation.',
|
|
value=3.0,
|
|
range=(0.1, 10.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='minAngleForLandmark',
|
|
label='Min Angle For Landmark',
|
|
description='Minimum angle for landmark.',
|
|
value=2.0,
|
|
range=(0.1, 10.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='maxReprojectionError',
|
|
label='Max Reprojection Error',
|
|
description='Maximum reprojection error.',
|
|
value=4.0,
|
|
range=(0.1, 10.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='minAngleInitialPair',
|
|
label='Min Angle Initial Pair',
|
|
description='Minimum angle for the initial pair.',
|
|
value=5.0,
|
|
range=(0.1, 10.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.FloatParam(
|
|
name='maxAngleInitialPair',
|
|
label='Max Angle Initial Pair',
|
|
description='Maximum angle for the initial pair.',
|
|
value=40.0,
|
|
range=(0.1, 60.0, 0.1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.BoolParam(
|
|
name='useOnlyMatchesFromInputFolder',
|
|
label='Use Only Matches From Input Folder',
|
|
description='Use only matches from the input matchesFolder parameter.\n'
|
|
'Matches folders previously added to the SfMData file will be ignored.',
|
|
value=False,
|
|
uid=[],
|
|
advanced=True,
|
|
),
|
|
desc.BoolParam(
|
|
name='useRigConstraint',
|
|
label='Use Rig Constraint',
|
|
description='Enable/Disable rig constraint.',
|
|
value=True,
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.IntParam(
|
|
name='rigMinNbCamerasForCalibration',
|
|
label='Min Nb Cameras For Rig Calibration',
|
|
description='Minimal number of cameras to start the calibration of the rig',
|
|
value=20,
|
|
range=(1, 50, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.BoolParam(
|
|
name='lockAllIntrinsics',
|
|
label='Force Lock of All Intrinsic Camera Parameters',
|
|
description='Force to keep constant all the intrinsics parameters of the cameras (focal length, \n'
|
|
'principal point, distortion if any) during the reconstruction.\n'
|
|
'This may be helpful if the input cameras are already fully calibrated.',
|
|
value=False,
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minNbCamerasToRefinePrincipalPoint',
|
|
label='Min Nb Cameras To Refine Principal Point',
|
|
description='Minimal number of cameras to refine the principal point of the cameras (one of the intrinsic parameters of the camera). '
|
|
'If we do not have enough cameras, the principal point in consider is considered in the center of the image. '
|
|
'If minNbCamerasToRefinePrincipalPoint<=0, the principal point is never refined. '
|
|
'If minNbCamerasToRefinePrincipalPoint==1, the principal point is always refined.',
|
|
value=3,
|
|
range=(0, 20, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
),
|
|
desc.BoolParam(
|
|
name='filterTrackForks',
|
|
label='Filter Track Forks',
|
|
description='Enable/Disable the track forks removal. A track contains a fork when incoherent matches \n'
|
|
'lead to multiple features in the same image for a single track. \n',
|
|
value=False,
|
|
uid=[0],
|
|
),
|
|
desc.BoolParam(
|
|
name='computeStructureColor',
|
|
label='Compute Structure Color',
|
|
description='Enable/Disable color computation of each 3D point.',
|
|
value=True,
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='initialPairA',
|
|
label='Initial Pair A',
|
|
description='Filename of the first image (without path).',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='initialPairB',
|
|
label='Initial Pair B',
|
|
description='Filename of the second image (without path).',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.ChoiceParam(
|
|
name='interFileExtension',
|
|
label='Inter File Extension',
|
|
description='Extension of the intermediate file export.',
|
|
value='.abc',
|
|
values=('.abc', '.ply'),
|
|
exclusive=True,
|
|
uid=[],
|
|
advanced=True,
|
|
),
|
|
desc.ChoiceParam(
|
|
name='verboseLevel',
|
|
label='Verbose Level',
|
|
description='Verbosity level (fatal, error, warning, info, debug, trace).',
|
|
value='info',
|
|
values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'],
|
|
exclusive=True,
|
|
uid=[],
|
|
)
|
|
]
|
|
|
|
outputs = [
|
|
desc.File(
|
|
name='output',
|
|
label='SfMData',
|
|
description='Path to the output sfmdata file',
|
|
value=desc.Node.internalFolder + 'sfm.abc',
|
|
uid=[],
|
|
),
|
|
desc.File(
|
|
name='outputViewsAndPoses',
|
|
label='Views and Poses',
|
|
description='''Path to the output sfmdata file with cameras (views and poses).''',
|
|
value=desc.Node.internalFolder + 'cameras.sfm',
|
|
uid=[],
|
|
),
|
|
desc.File(
|
|
name='extraInfoFolder',
|
|
label='Output Folder',
|
|
description='Folder for intermediate reconstruction files and additional reconstruction information files.',
|
|
value=desc.Node.internalFolder,
|
|
uid=[],
|
|
),
|
|
]
|