Meshroom/meshroom/nodes/aliceVision/LdrToHdrSampling.py
2024-10-11 13:59:46 +02:00

286 lines
12 KiB
Python

__version__ = "4.0"
import json
import math
import os
from collections import Counter
from pyalicevision import sfmData as avsfmdata
from pyalicevision import hdr as avhdr
from meshroom.core import desc
from meshroom.core.utils import COLORSPACES, VERBOSE_LEVEL
def findMetadata(d, keys, defaultValue):
v = None
for key in keys:
v = d.get(key, None)
k = key.lower()
if v is not None:
return v
for dk, dv in d.items():
dkm = dk.lower().replace(" ", "")
if dkm == key.lower():
return dv
dkm = dkm.split(":")[-1]
dkm = dkm.split("/")[-1]
if dkm == k:
return dv
return defaultValue
class DividedInputNodeSize(desc.DynamicNodeSize):
'''
The LDR2HDR will reduce the amount of views in the SfMData.
This class converts the number of LDR input views into the number of HDR output views.
'''
def __init__(self, param, divParam):
super(DividedInputNodeSize, self).__init__(param)
self._divParam = divParam
def computeSize(self, node):
s = super(DividedInputNodeSize, self).computeSize(node)
divParam = node.attribute(self._divParam)
if divParam.value == 0:
return s
# s is the total number of inputs and may include outliers, that will not be used
# during computations and should thus be excluded from the size computation
return (s - node.outliersNb) / divParam.value
class LdrToHdrSampling(desc.AVCommandLineNode):
commandLine = 'aliceVision_LdrToHdrSampling {allParams}'
size = DividedInputNodeSize('input', 'nbBrackets')
parallelization = desc.Parallelization(blockSize=2)
commandLineRange = '--rangeStart {rangeStart} --rangeSize {rangeBlockSize}'
category = 'Panorama HDR'
documentation = '''
Sample pixels from Low range images for HDR creation.
'''
outliersNb = 0 # Number of detected outliers among the input images
inputs = [
desc.File(
name="input",
label="SfMData",
description="Input SfMData file.",
value="",
),
desc.IntParam(
name="userNbBrackets",
label="Number Of Brackets",
description="Number of exposure brackets per HDR image (0 for automatic detection).",
value=0,
range=(0, 15, 1),
invalidate=False,
group="user", # not used directly on the command line
errorMessage="The set number of brackets is not a multiple of the number of input images.\n"
"Errors will occur during the computation.",
exposed=True,
),
desc.IntParam(
name="nbBrackets",
label="Automatic Nb Brackets",
description="Number of exposure brackets used per HDR image.\n"
"It is detected automatically from input Viewpoints metadata if 'userNbBrackets'\n"
"is 0, else it is equal to 'userNbBrackets'.",
value=0,
range=(0, 15, 1),
group="bracketsParams",
),
desc.BoolParam(
name="byPass",
label="Bypass",
description="Bypass HDR creation and use the medium bracket as the source for the next steps.",
value=False,
enabled=lambda node: node.nbBrackets.value != 1,
exposed=True,
),
desc.ChoiceParam(
name="calibrationMethod",
label="Calibration Method",
description="Method used for camera calibration:\n"
" - Auto: If RAW images are detected, the 'Linear' calibration method will be used. Otherwise, the 'Debevec' calibration method will be used.\n"
" - Linear: Disables the calibration and assumes a linear Camera Response Function. If images are encoded in a known colorspace (like sRGB for JPEG), they will be automatically converted to linear.\n"
" - Debevec: Standard method for HDR calibration.\n"
" - Grossberg: Based on a learned database of cameras, allows to reduce the Camera Response Function to a few parameters while keeping all the precision.\n"
" - Laguerre: Simple but robust method estimating the minimal number of parameters.",
values=["auto", "linear", "debevec", "grossberg", "laguerre"],
value="auto",
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
exposed=True,
),
desc.IntParam(
name="channelQuantizationPower",
label="Channel Quantization Power",
description="Quantization level like 8 bits or 10 bits.",
value=10,
range=(8, 14, 1),
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
exposed=True,
),
desc.ChoiceParam(
name="workingColorSpace",
label="Working Color Space",
description="Color space in which the data are processed.\n"
"If 'auto' is selected, the working color space will be 'Linear' if RAW images are detected; otherwise, it will be set to 'sRGB'.",
values=COLORSPACES,
value="AUTO",
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
exposed=True,
),
desc.IntParam(
name="blockSize",
label="Block Size",
description="Size of the image tile to extract a sample.",
value=256,
range=(8, 1024, 1),
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.IntParam(
name="radius",
label="Patch Radius",
description="Radius of the patch used to analyze the sample statistics.",
value=5,
range=(0, 10, 1),
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.IntParam(
name="maxCountSample",
label="Max Number Of Samples",
description="Maximum number of samples per image group.",
value=200,
range=(10, 1000, 10),
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.BoolParam(
name="debug",
label="Export Debug Files",
description="Export debug files to analyze the sampling strategy.",
value=False,
invalidate=False,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.ChoiceParam(
name="verboseLevel",
label="Verbose Level",
description="Verbosity level (fatal, error, warning, info, debug, trace).",
values=VERBOSE_LEVEL,
value="info",
),
]
outputs = [
desc.File(
name="output",
label="Folder",
description="Output path for the samples.",
value=desc.Node.internalFolder,
),
]
def processChunk(self, chunk):
if chunk.node.nbBrackets.value == 1:
return
# Trick to avoid sending --nbBrackets to the command line when the bracket detection is automatic.
# Otherwise, the AliceVision executable has no way of determining whether the bracket detection was automatic
# or if it was hard-set by the user.
self.commandLine = "aliceVision_LdrToHdrSampling {allParams}"
if chunk.node.userNbBrackets.value == chunk.node.nbBrackets.value:
self.commandLine += "{bracketsParams}"
super(LdrToHdrSampling, self).processChunk(chunk)
@classmethod
def update(cls, node):
if not isinstance(node.nodeDesc, cls):
raise ValueError("Node {} is not an instance of type {}".format(node, cls))
# TODO: use Node version for this test
if "userNbBrackets" not in node.getAttributes().keys():
# Old version of the node
return
node.outliersNb = 0 # Reset the number of detected outliers
node.userNbBrackets.validValue = True # Reset the status of "userNbBrackets"
cameraInitOutput = node.input.getLinkParam(recursive=True)
if not cameraInitOutput:
node.nbBrackets.value = 0
return
if node.userNbBrackets.value != 0:
# The number of brackets has been manually forced: check whether it is valid or not
if cameraInitOutput and cameraInitOutput.node and cameraInitOutput.node.hasAttribute("viewpoints"):
viewpoints = cameraInitOutput.node.viewpoints.value
# The number of brackets should be a multiple of the number of input images
if (len(viewpoints) % node.userNbBrackets.value != 0):
node.userNbBrackets.validValue = False
else:
node.userNbBrackets.validValue = True
node.nbBrackets.value = node.userNbBrackets.value
return
if not cameraInitOutput.node.hasAttribute("viewpoints"):
if cameraInitOutput.node.hasAttribute("input"):
cameraInitOutput = cameraInitOutput.node.input.getLinkParam(recursive=True)
if cameraInitOutput and cameraInitOutput.node and cameraInitOutput.node.hasAttribute("viewpoints"):
viewpoints = cameraInitOutput.node.viewpoints.value
else:
# No connected CameraInit
node.nbBrackets.value = 0
return
inputs = avhdr.vectorli()
for viewpoint in viewpoints:
jsonMetadata = viewpoint.metadata.value
if not jsonMetadata:
# no metadata, we cannot find the number of brackets
node.nbBrackets.value = 0
return
d = json.loads(jsonMetadata)
# Find Fnumber
fnumber = findMetadata(d, ["FNumber"], "")
if fnumber == "":
aperture = findMetadata(d, ["Exif:ApertureValue", "ApertureValue", "Aperture"], "")
if aperture == "":
fnumber = -1.0
else:
fnumber = pow(2.0, aperture / 2.0)
# Get shutter speed and ISO
shutterSpeed = findMetadata(d, ["ExposureTime", "Exif:ShutterSpeedValue", "ShutterSpeedValue", "ShutterSpeed"], -1.0)
iso = findMetadata(d, ["Exif:PhotographicSensitivity", "PhotographicSensitivity", "Photographic Sensitivity", "ISO"], -1.0)
if not fnumber and not shutterSpeed:
# If one image without shutter or fnumber, we cannot found the number of brackets.
# We assume that there is no multi-bracketing, so nothing to do.
node.nbBrackets.value = 1
return
exposure = LdrToHdrSampling.getExposure((float(fnumber), float(shutterSpeed), float(iso)))
obj = avhdr.LuminanceInfo(viewpoint.viewId.value,viewpoint.path.value, exposure)
inputs.append(obj)
obj = avhdr.estimateGroups(inputs)
if len(obj) == 0:
node.nbBrackets.value = 0
return
bracketSize = len(obj[0])
bracketCount = len(obj)
node.nbBrackets.value = bracketSize
node.outliersNb = len(inputs) - (bracketSize * bracketCount)
@staticmethod
def getExposure(exp, refIso = 100.0, refFnumber = 1.0):
fnumber, shutterSpeed, iso = exp
obj = avsfmdata.ExposureSetting(shutterSpeed, fnumber, iso)
return obj.getExposure()