Meshroom/meshroom/core/graph.py
2025-03-26 11:32:35 +00:00

1661 lines
64 KiB
Python

from __future__ import print_function
import json
import logging
import os
import re
from typing import Any, Iterable, Optional
import weakref
from collections import defaultdict, OrderedDict
from contextlib import contextmanager
from enum import Enum
import meshroom
import meshroom.core
from meshroom.common import BaseObject, DictModel, Slot, Signal, Property
from meshroom.core import Version
from meshroom.core.attribute import Attribute, ListAttribute, GroupAttribute
from meshroom.core.exception import GraphCompatibilityError, StopGraphVisit, StopBranchVisit
from meshroom.core.graphIO import GraphIO, GraphSerializer, TemplateGraphSerializer, PartialGraphSerializer
from meshroom.core.node import BaseNode, Status, Node, CompatibilityNode
from meshroom.core.nodeFactory import nodeFactory
from meshroom.core.mtyping import PathLike
# Replace default encoder to support Enums
DefaultJSONEncoder = json.JSONEncoder # store the original one
class MyJSONEncoder(DefaultJSONEncoder): # declare a new one with Enum support
def default(self, obj):
if isinstance(obj, Enum):
return obj.name
return DefaultJSONEncoder.default(self, obj) # use the default one for all other types
json.JSONEncoder = MyJSONEncoder # replace the default implementation with our new one
@contextmanager
def GraphModification(graph):
"""
A Context Manager that can be used to trigger only one Graph update
for a group of several modifications.
GraphModifications can be nested.
"""
if not isinstance(graph, Graph):
raise ValueError("GraphModification expects a Graph instance")
# Store update policy for nested usage
enabled = graph.updateEnabled
# Disable graph update for nested block
# (does nothing if already disabled)
graph.updateEnabled = False
try:
yield # Execute nested block
except Exception:
raise
finally:
# Restore update policy
graph.updateEnabled = enabled
class Edge(BaseObject):
def __init__(self, src, dst, parent=None):
super(Edge, self).__init__(parent)
self._src = weakref.ref(src)
self._dst = weakref.ref(dst)
self._repr = "<Edge> {} -> {}".format(self._src(), self._dst())
@property
def src(self):
return self._src()
@property
def dst(self):
return self._dst()
src = Property(Attribute, src.fget, constant=True)
dst = Property(Attribute, dst.fget, constant=True)
WHITE = 0
GRAY = 1
BLACK = 2
class Visitor(object):
"""
Base class for Graph Visitors that does nothing.
Sub-classes can override any method to implement specific algorithms.
"""
def __init__(self, reverse, dependenciesOnly):
super(Visitor, self).__init__()
self.reverse = reverse
self.dependenciesOnly = dependenciesOnly
# def initializeVertex(self, s, g):
# '''is invoked on every vertex of the graph before the start of the graph search.'''
# pass
# def startVertex(self, s, g):
# '''is invoked on the source vertex once before the start of the search.'''
# pass
def discoverVertex(self, u, g):
""" Is invoked when a vertex is encountered for the first time. """
pass
def examineEdge(self, e, g):
""" Is invoked on every out-edge of each vertex after it is discovered."""
pass
def treeEdge(self, e, g):
""" Is invoked on each edge as it becomes a member of the edges that form the search tree.
If you wish to record predecessors, do so at this event point. """
pass
def backEdge(self, e, g):
""" Is invoked on the back edges in the graph. """
pass
def forwardOrCrossEdge(self, e, g):
""" Is invoked on forward or cross edges in the graph.
In an undirected graph this method is never called."""
pass
def finishEdge(self, e, g):
""" Is invoked on the non-tree edges in the graph
as well as on each tree edge after its target vertex is finished. """
pass
def finishVertex(self, u, g):
""" Is invoked on a vertex after all of its out edges have been added to the search tree and all of the
adjacent vertices have been discovered (but before their out-edges have been examined). """
pass
def changeTopology(func):
"""
Graph methods modifying the graph topology (add/remove edges or nodes)
must be decorated with 'changeTopology' for update mechanism to work as intended.
"""
def decorator(self, *args, **kwargs):
assert isinstance(self, Graph)
# call method
result = func(self, *args, **kwargs)
# mark graph dirty
self.dirtyTopology = True
# request graph update
self.update()
return result
return decorator
def blockNodeCallbacks(func):
"""
Graph methods loading serialized graph content must be decorated with 'blockNodeCallbacks',
to avoid attribute changed callbacks defined on node descriptions to be triggered during
this process.
"""
def inner(self, *args, **kwargs):
self._loading = True
try:
return func(self, *args, **kwargs)
finally:
self._loading = False
return inner
class Graph(BaseObject):
"""
_________________ _________________ _________________
| | | | | |
| Node A | | Node B | | Node C |
| | edge | | edge | |
|input output|>---->|input output|>---->|input output|
|_______________| |_______________| |_______________|
Data structures:
nodes = {'A': <nodeA>, 'B': <nodeB>, 'C': <nodeC>}
edges = {B.input: A.output, C.input: B.output,}
"""
_cacheDir = ""
def __init__(self, name, parent=None):
super(Graph, self).__init__(parent)
self.name = name
self._loading = False
self._saving = False
self._updateEnabled = True
self._updateRequested = False
self.dirtyTopology = False
self._nodesMinMaxDepths = {}
self._computationBlocked = {}
self._canComputeLeaves = True
self._nodes = DictModel(keyAttrName='name', parent=self)
# Edges: use dst attribute as unique key since it can only have one input connection
self._edges = DictModel(keyAttrName='dst', parent=self)
self._compatibilityNodes = DictModel(keyAttrName='name', parent=self)
self.cacheDir = meshroom.core.defaultCacheFolder
self._filepath = ''
self._fileDateVersion = 0
self.header = {}
def clear(self):
self._clearGraphContent()
self.header.clear()
self._unsetFilepath()
def _clearGraphContent(self):
self._edges.clear()
# Tell QML nodes are going to be deleted
for node in self._nodes:
node.alive = False
self._nodes.clear()
self._compatibilityNodes.clear()
@property
def fileFeatures(self):
""" Get loaded file supported features based on its version. """
return GraphIO.getFeaturesForVersion(self.header.get(GraphIO.Keys.FileVersion, "0.0"))
@property
def isLoading(self):
""" Return True if the graph is currently being loaded. """
return self._loading
@property
def isSaving(self):
""" Return True if the graph is currently being saved. """
return self._saving
@Slot(str)
def load(self, filepath: PathLike):
"""
Load a Meshroom Graph ".mg" file in place.
Args:
filepath: The path to the Meshroom Graph file to load.
"""
self._deserialize(Graph._loadGraphData(filepath))
self._setFilepath(filepath)
self._fileDateVersion = os.path.getmtime(filepath)
def initFromTemplate(self, filepath: PathLike, publishOutputs: bool = False):
"""
Deserialize a template Meshroom Graph ".mg" file in place.
When initializing from a template, the internal filepath of the graph instance is not set.
Saving the file on disk will require to specify a filepath.
Args:
filepath: The path to the Meshroom Graph file to load.
publishOutputs: (optional) Whether to keep 'Publish' nodes.
"""
self._deserialize(Graph._loadGraphData(filepath))
# Creating nodes from a template is conceptually similar to explicit node creation,
# therefore the nodes descriptors' "onNodeCreated" callback is triggered for each
# node instance created by this process.
self._triggerNodeCreatedCallback(self.nodes)
if not publishOutputs:
with GraphModification(self):
for node in [node for node in self.nodes if node.nodeType == "Publish"]:
self.removeNode(node.name)
@staticmethod
def _loadGraphData(filepath: PathLike) -> dict:
"""Deserialize the content of the Meshroom Graph file at `filepath` to a dictionnary."""
with open(filepath) as file:
graphData = json.load(file)
return graphData
@blockNodeCallbacks
def _deserialize(self, graphData: dict):
"""Deserialize `graphData` in the current Graph instance.
Args:
graphData: The serialized Graph.
"""
self.clear()
self.header = graphData.get(GraphIO.Keys.Header, {})
fileVersion = Version(self.header.get(GraphIO.Keys.FileVersion, "0.0"))
graphContent = self._normalizeGraphContent(graphData, fileVersion)
isTemplate = self.header.get(GraphIO.Keys.Template, False)
with GraphModification(self):
# iterate over nodes sorted by suffix index in their names
for nodeName, nodeData in sorted(
graphContent.items(), key=lambda x: self.getNodeIndexFromName(x[0])
):
self._deserializeNode(nodeData, nodeName, self)
# Create graph edges by resolving attributes expressions
self._applyExpr()
# Templates are specific: they contain only the minimal amount of
# serialized data to describe the graph structure.
# They are not meant to be computed: therefore, we can early return here,
# as uid conflict evaluation is only meaningful for nodes with computed data.
if isTemplate:
return
# By this point, the graph has been fully loaded and an updateInternals has been triggered, so all the
# nodes' links have been resolved and their UID computations are all complete.
# It is now possible to check whether the UIDs stored in the graph file for each node correspond to the ones
# that were computed.
self._evaluateUidConflicts(graphContent)
def _normalizeGraphContent(self, graphData: dict, fileVersion: Version) -> dict:
graphContent = graphData.get(GraphIO.Keys.Graph, graphData)
if fileVersion < Version("2.0"):
# For internal folders, all "{uid0}" keys should be replaced with "{uid}"
updatedFileData = json.dumps(graphContent).replace("{uid0}", "{uid}")
# For fileVersion < 2.0, the nodes' UID is stored as:
# "uids": {"0": "hashvalue"}
# These should be identified and replaced with:
# "uid": "hashvalue"
uidPattern = re.compile(r'"uids": \{"0":.*?\}')
uidOccurrences = uidPattern.findall(updatedFileData)
for occ in uidOccurrences:
uid = occ.split("\"")[-2] # UID is second to last element
newUidStr = r'"uid": "{}"'.format(uid)
updatedFileData = updatedFileData.replace(occ, newUidStr)
graphContent = json.loads(updatedFileData)
return graphContent
def _deserializeNode(self, nodeData: dict, nodeName: str, fromGraph: "Graph"):
# Retrieve version info from:
# 1. nodeData: node saved from a CompatibilityNode
# 2. nodesVersion in file header: node saved from a Node
# If unvailable, the "version" field will not be set in `nodeData`.
if "version" not in nodeData:
if version := fromGraph._getNodeTypeVersionFromHeader(nodeData["nodeType"]):
nodeData["version"] = version
inTemplate = fromGraph.header.get(GraphIO.Keys.Template, False)
node = nodeFactory(nodeData, nodeName, inTemplate=inTemplate)
self._addNode(node, nodeName)
return node
def _getNodeTypeVersionFromHeader(self, nodeType: str, default: Optional[str] = None) -> Optional[str]:
nodeVersions = self.header.get(GraphIO.Keys.NodesVersions, {})
return nodeVersions.get(nodeType, default)
def _evaluateUidConflicts(self, graphContent: dict):
"""
Compare the computed UIDs of all the nodes in the graph with the UIDs serialized in `graphContent`. If there
are mismatches, the nodes with the unexpected UID are replaced with "UidConflict" compatibility nodes.
Args:
graphContent: The serialized Graph content.
"""
def _serializedNodeUidMatchesComputedUid(nodeData: dict, node: BaseNode) -> bool:
"""Returns whether the serialized UID matches the one computed in the `node` instance."""
if isinstance(node, CompatibilityNode):
return True
serializedUid = nodeData.get("uid", None)
computedUid = node._uid
return serializedUid is None or computedUid is None or serializedUid == computedUid
uidConflictingNodes = [
node
for node in self.nodes
if not _serializedNodeUidMatchesComputedUid(graphContent[node.name], node)
]
if not uidConflictingNodes:
return
logging.warning("UID Compatibility issues found: recreating conflicting nodes as CompatibilityNodes.")
# A uid conflict is contagious: if a node has a uid conflict, all of its downstream nodes may be
# impacted as well, as the uid flows through connections.
# Therefore, we deal with conflicting uid nodes by depth: replacing a node with a CompatibilityNode restores
# the serialized uid, which might solve "false-positives" downstream conflicts as well.
nodesSortedByDepth = sorted(uidConflictingNodes, key=lambda node: node.minDepth)
for node in nodesSortedByDepth:
nodeData = graphContent[node.name]
# Evaluate if the node uid is still conflicting at this point, or if it has been resolved by an
# upstream node replacement.
if _serializedNodeUidMatchesComputedUid(nodeData, node):
continue
expectedUid = node._uid
compatibilityNode = nodeFactory(graphContent[node.name], node.name, expectedUid=expectedUid)
# This operation will trigger a graph update that will recompute the uids of all nodes,
# allowing the iterative resolution of uid conflicts.
self.replaceNode(node.name, compatibilityNode)
def importGraphContentFromFile(self, filepath: PathLike) -> list[Node]:
"""Import the content (nodes and edges) of another Graph file into this Graph instance.
Args:
filepath: The path to the Graph file to import.
Returns:
The list of newly created Nodes.
"""
graph = loadGraph(filepath)
return self.importGraphContent(graph)
@blockNodeCallbacks
def importGraphContent(self, graph: "Graph") -> list[Node]:
"""
Import the content (node and edges) of another `graph` into this Graph instance.
Nodes are imported with their original names if possible, otherwise a new unique name is generated
from their node type.
Args:
graph: The graph to import.
Returns:
The list of newly created Nodes.
"""
def _renameClashingNodes():
if not self.nodes:
return
unavailableNames = set(self.nodes.keys())
for node in graph.nodes:
if node._name in unavailableNames:
node._name = self._createUniqueNodeName(node.nodeType, unavailableNames)
unavailableNames.add(node._name)
def _importNodesAndEdges() -> list[Node]:
importedNodes = []
# If we import the content of the graph within itself,
# iterate over a copy of the nodes as the graph is modified during the iteration.
nodes = graph.nodes if graph is not self else list(graph.nodes)
with GraphModification(self):
for srcNode in nodes:
node = self._deserializeNode(srcNode.toDict(), srcNode.name, graph)
importedNodes.append(node)
self._applyExpr()
return importedNodes
_renameClashingNodes()
importedNodes = _importNodesAndEdges()
return importedNodes
@property
def updateEnabled(self):
return self._updateEnabled
@updateEnabled.setter
def updateEnabled(self, enabled):
self._updateEnabled = enabled
if enabled and self._updateRequested:
# Trigger an update if requested while disabled
self.update()
self._updateRequested = False
@changeTopology
def _addNode(self, node, uniqueName):
"""
Internal method to add the given node to this Graph, with the given name (must be unique).
Attribute expressions are not resolved.
"""
if node.graph is not None and node.graph != self:
raise RuntimeError(
'Node "{}" cannot be part of the Graph "{}", as it is already part of the other graph "{}".'.format(
node.nodeType, self.name, node.graph.name))
assert uniqueName not in self._nodes.keys()
node._name = uniqueName
node.graph = self
self._nodes.add(node)
def addNode(self, node, uniqueName=None):
"""
Add the given node to this Graph with an optional unique name,
and resolve attributes expressions.
"""
self._addNode(node, uniqueName if uniqueName else self._createUniqueNodeName(node.nodeType))
# Resolve attribute expressions
with GraphModification(self):
node._applyExpr()
return node
def copyNode(self, srcNode, withEdges=False):
"""
Get a copy instance of a node outside the graph.
Args:
srcNode (Node): the node to copy
withEdges (bool): whether to copy edges
Returns:
Node, dict: the created node instance,
a dictionary of linked attributes with their original value (empty if withEdges is True)
"""
with GraphModification(self):
# create a new node of the same type and with the same attributes values
# keep links as-is so that CompatibilityNodes attributes can be created with correct automatic description
# (File params for link expressions)
node = nodeFactory(srcNode.toDict(), srcNode.nodeType) # use nodeType as name
# skip edges: filter out attributes which are links by resetting default values
skippedEdges = {}
if not withEdges:
for n, attr in node.attributes.items():
if attr.isOutput:
# edges are declared in input with an expression linking
# to another param (which could be an output)
continue
# find top-level links
if Attribute.isLinkExpression(attr.value):
skippedEdges[attr] = attr.value
attr.resetToDefaultValue()
# find links in ListAttribute children
elif isinstance(attr, (ListAttribute, GroupAttribute)):
for child in attr.value:
if Attribute.isLinkExpression(child.value):
skippedEdges[child] = child.value
child.resetToDefaultValue()
return node, skippedEdges
def duplicateNodes(self, srcNodes):
""" Duplicate nodes in the graph with their connections.
Args:
srcNodes: the nodes to duplicate
Returns:
OrderedDict[Node, Node]: the source->duplicate map
"""
# use OrderedDict to keep duplicated nodes creation order
duplicates = OrderedDict()
with GraphModification(self):
duplicateEdges = {}
# first, duplicate all nodes without edges and keep a 'source=>duplicate' map
# keeps tracks of non-created edges for later remap
for srcNode in srcNodes:
node, edges = self.copyNode(srcNode, withEdges=False)
duplicate = self.addNode(node)
duplicateEdges.update(edges)
duplicates.setdefault(srcNode, []).append(duplicate)
# re-create edges taking into account what has been duplicated
for attr, linkExpression in duplicateEdges.items():
# logging.warning("attr={} linkExpression={}".format(attr.fullName, linkExpression))
link = linkExpression[1:-1] # remove starting '{' and trailing '}'
# get source node and attribute name
edgeSrcNodeName, edgeSrcAttrName = link.split(".", 1)
edgeSrcNode = self.node(edgeSrcNodeName)
# if the edge's source node has been duplicated (the key exists in the dictionary),
# use the duplicate; otherwise use the original node
if edgeSrcNode in duplicates:
edgeSrcNode = duplicates.get(edgeSrcNode)[0]
self.addEdge(edgeSrcNode.attribute(edgeSrcAttrName), attr)
return duplicates
def outEdges(self, attribute):
""" Return the list of edges starting from the given attribute """
# type: (Attribute,) -> [Edge]
return [edge for edge in self.edges if edge.src == attribute]
def nodeInEdges(self, node):
# type: (Node) -> [Edge]
""" Return the list of edges arriving to this node """
return [edge for edge in self.edges if edge.dst.node == node]
def nodeOutEdges(self, node):
# type: (Node) -> [Edge]
""" Return the list of edges starting from this node """
return [edge for edge in self.edges if edge.src.node == node]
@changeTopology
def removeNode(self, nodeName):
"""
Remove the node identified by 'nodeName' from the graph.
Returns:
- a dictionary containing the incoming edges removed by this operation:
{dstAttr.getFullNameToNode(), srcAttr.getFullNameToNode()}
- a dictionary containing the outgoing edges removed by this operation:
{dstAttr.getFullNameToNode(), srcAttr.getFullNameToNode()}
- a dictionary containing the values, indices and keys of attributes that were connected to a ListAttribute
prior to the removal of all edges:
{dstAttr.getFullNameToNode(), (dstAttr.root.getFullNameToNode(), dstAttr.index, dstAttr.value)}
"""
node = self.node(nodeName)
inEdges = {}
outEdges = {}
outListAttributes = {}
# Remove all edges arriving to and starting from this node
with GraphModification(self):
# Two iterations over the outgoing edges are necessary:
# - the first one is used to collect all the information about the edges while they are all there
# (overall context)
# - once we have collected all the information, the edges (and perhaps the entries in ListAttributes) can
# actually be removed
for edge in self.nodeOutEdges(node):
outEdges[edge.dst.getFullNameToNode()] = edge.src.getFullNameToNode()
if isinstance(edge.dst.root, ListAttribute):
index = edge.dst.root.index(edge.dst)
outListAttributes[edge.dst.getFullNameToNode()] = (edge.dst.root.getFullNameToNode(),
index, edge.dst.value
if edge.dst.value else None)
for edge in self.nodeOutEdges(node):
self.removeEdge(edge.dst)
# Remove the corresponding attributes from the ListAttributes instead of just emptying their values
if isinstance(edge.dst.root, ListAttribute):
index = edge.dst.root.index(edge.dst)
edge.dst.root.remove(index)
for edge in self.nodeInEdges(node):
self.removeEdge(edge.dst)
inEdges[edge.dst.getFullNameToNode()] = edge.src.getFullNameToNode()
node.alive = False
self._nodes.remove(node)
self.update()
return inEdges, outEdges, outListAttributes
def addNewNode(
self, nodeType: str, name: Optional[str] = None, position: Optional[str] = None, **kwargs
) -> Node:
"""
Create and add a new node to the graph.
Args:
nodeType: the node type name.
name: if specified, the desired name for this node. If not unique, will be prefixed (_N).
position: the position of the node.
**kwargs: keyword arguments to initialize the created node's attributes.
Returns:
The newly created node.
"""
if name and name in self._nodes.keys():
name = self._createUniqueNodeName(name)
node = self.addNode(Node(nodeType, position=position, **kwargs), uniqueName=name)
node.updateInternals()
self._triggerNodeCreatedCallback([node])
return node
def _triggerNodeCreatedCallback(self, nodes: Iterable[Node]):
"""Trigger the `onNodeCreated` node descriptor callback for each node instance in `nodes`."""
with GraphModification(self):
for node in nodes:
if node.nodeDesc:
node.nodeDesc.onNodeCreated(node)
def _createUniqueNodeName(self, inputName: str, existingNames: Optional[set[str]] = None):
"""Create a unique node name based on the input name.
Args:
inputName: The desired node name.
existingNames: (optional) If specified, consider this set for uniqueness check, instead of the list of nodes.
"""
existingNodeNames = existingNames or set(self._nodes.objects.keys())
idx = 1
while idx:
newName = f"{inputName}_{idx}"
if newName not in existingNodeNames:
return newName
idx += 1
def node(self, nodeName) -> Optional[Node]:
return self._nodes.get(nodeName)
def upgradeNode(self, nodeName) -> Node:
"""
Upgrade the CompatibilityNode identified as 'nodeName'
Args:
nodeName (str): the name of the CompatibilityNode to upgrade
Returns:
- the upgraded (newly created) node
- a dictionary containing the incoming edges removed by this operation:
{dstAttr.getFullNameToNode(), srcAttr.getFullNameToNode()}
- a dictionary containing the outgoing edges removed by this operation:
{dstAttr.getFullNameToNode(), srcAttr.getFullNameToNode()}
- a dictionary containing the values, indices and keys of attributes that were connected to a ListAttribute
prior to the removal of all edges:
{dstAttr.getFullNameToNode(), (dstAttr.root.getFullNameToNode(), dstAttr.index, dstAttr.value)}
"""
node = self.node(nodeName)
if not isinstance(node, CompatibilityNode):
raise ValueError("Upgrade is only available on CompatibilityNode instances.")
upgradedNode = node.upgrade()
self.replaceNode(nodeName, upgradedNode)
return upgradedNode
@changeTopology
def replaceNode(self, nodeName: str, newNode: BaseNode):
"""Replace the node idenfitied by `nodeName` with `newNode`, while restoring compatible edges.
Args:
nodeName: The name of the Node to replace.
newNode: The Node instance to replace it with.
"""
with GraphModification(self):
_, outEdges, outListAttributes = self.removeNode(nodeName)
self.addNode(newNode, nodeName)
self._restoreOutEdges(outEdges, outListAttributes)
def _restoreOutEdges(self, outEdges: dict[str, str], outListAttributes):
"""Restore output edges that were removed during a call to "removeNode".
Args:
outEdges: a dictionary containing the outgoing edges removed by a call to "removeNode".
{dstAttr.getFullNameToNode(), srcAttr.getFullNameToNode()}
outListAttributes: a dictionary containing the values, indices and keys of attributes that were connected
to a ListAttribute prior to the removal of all edges.
{dstAttr.getFullNameToNode(), (dstAttr.root.getFullNameToNode(), dstAttr.index, dstAttr.value)}
"""
def _recreateTargetListAttributeChildren(listAttrName: str, index: int, value: Any):
listAttr = self.attribute(listAttrName)
if not isinstance(listAttr, ListAttribute):
return
if isinstance(value, list):
listAttr[index:index] = value
else:
listAttr.insert(index, value)
for dstName, srcName in outEdges.items():
# Re-create the entries in ListAttributes that were completely removed during the call to "removeNode"
if dstName in outListAttributes:
_recreateTargetListAttributeChildren(*outListAttributes[dstName])
try:
self.addEdge(self.attribute(srcName), self.attribute(dstName))
except (KeyError, ValueError) as e:
logging.warning(f"Failed to restore edge {srcName} -> {dstName}: {str(e)}")
def upgradeAllNodes(self):
""" Upgrade all upgradable CompatibilityNode instances in the graph. """
nodeNames = [name for name, n in self._compatibilityNodes.items() if n.canUpgrade]
with GraphModification(self):
for nodeName in nodeNames:
self.upgradeNode(nodeName)
@Slot(str, result=Attribute)
def attribute(self, fullName):
# type: (str) -> Attribute
"""
Return the attribute identified by the unique name 'fullName'.
If it does not exist, return None.
"""
node, attribute = fullName.split('.', 1)
if self.node(node).hasAttribute(attribute):
return self.node(node).attribute(attribute)
return None
@Slot(str, result=Attribute)
def internalAttribute(self, fullName):
# type: (str) -> Attribute
"""
Return the internal attribute identified by the unique name 'fullName'.
If it does not exist, return None.
"""
node, attribute = fullName.split('.', 1)
if self.node(node).hasInternalAttribute(attribute):
return self.node(node).internalAttribute(attribute)
return None
@staticmethod
def getNodeIndexFromName(name):
""" Nodes are created with a suffix index; returns this index by parsing node name.
Args:
name (str): the node name
Returns:
int: the index retrieved from node name (-1 if not found)
"""
try:
return int(name.split('_')[-1])
except Exception:
return -1
@staticmethod
def sortNodesByIndex(nodes):
"""
Sort the given list of Nodes using the suffix index in their names.
[NodeName_1, NodeName_0] => [NodeName_0, NodeName_1]
Args:
nodes (list[Node]): the list of Nodes to sort
Returns:
list[Node]: the sorted list of Nodes based on their index
"""
return sorted(nodes, key=lambda x: Graph.getNodeIndexFromName(x.name))
def nodesOfType(self, nodeType, sortedByIndex=True):
"""
Returns all Nodes of the given nodeType.
Args:
nodeType (str): the node type name to consider.
sortedByIndex (bool): whether to sort the nodes by their index (see Graph.sortNodesByIndex)
Returns:
list[Node]: the list of nodes matching the given nodeType.
"""
nodes = [n for n in self._nodes.values() if n.nodeType == nodeType]
return self.sortNodesByIndex(nodes) if sortedByIndex else nodes
def findInitNodes(self):
"""
Returns:
list[Node]: the list of Init nodes (nodes inheriting from InitNode)
"""
nodes = [n for n in self._nodes.values() if isinstance(n.nodeDesc, meshroom.core.desc.InitNode)]
return nodes
def findNodeCandidates(self, nodeNameExpr: str) -> list[Node]:
pattern = re.compile(nodeNameExpr)
return [v for k, v in self._nodes.objects.items() if pattern.match(k)]
def findNode(self, nodeExpr: str) -> Node:
candidates = self.findNodeCandidates('^' + nodeExpr)
if not candidates:
raise KeyError('No node candidate for "{}"'.format(nodeExpr))
if len(candidates) > 1:
for c in candidates:
if c.name == nodeExpr:
return c
raise KeyError('Multiple node candidates for "{}": {}'.format(nodeExpr, str([c.name for c in candidates])))
return candidates[0]
def findNodes(self, nodesExpr):
if isinstance(nodesExpr, list):
return [self.findNode(nodeName) for nodeName in nodesExpr]
return [self.findNode(nodesExpr)]
def edge(self, dstAttributeName):
return self._edges.get(dstAttributeName)
def getLeafNodes(self, dependenciesOnly):
nodesWithOutputLink = set([edge.src.node for edge in self.getEdges(dependenciesOnly)])
return set(self._nodes) - nodesWithOutputLink
def getRootNodes(self, dependenciesOnly):
nodesWithInputLink = set([edge.dst.node for edge in self.getEdges(dependenciesOnly)])
return set(self._nodes) - nodesWithInputLink
@changeTopology
def addEdge(self, srcAttr, dstAttr):
assert isinstance(srcAttr, Attribute)
assert isinstance(dstAttr, Attribute)
if srcAttr.node.graph != self or dstAttr.node.graph != self:
raise RuntimeError('The attributes of the edge should be part of a common graph.')
if dstAttr in self.edges.keys():
raise RuntimeError('Destination attribute "{}" is already connected.'.format(dstAttr.getFullNameToNode()))
edge = Edge(srcAttr, dstAttr)
self.edges.add(edge)
self.markNodesDirty(dstAttr.node)
dstAttr.valueChanged.emit()
dstAttr.isLinkChanged.emit()
srcAttr.hasOutputConnectionsChanged.emit()
return edge
def addEdges(self, *edges):
with GraphModification(self):
for edge in edges:
self.addEdge(*edge)
@changeTopology
def removeEdge(self, dstAttr):
if dstAttr not in self.edges.keys():
raise RuntimeError('Attribute "{}" is not connected'.format(dstAttr.getFullNameToNode()))
edge = self.edges.pop(dstAttr)
self.markNodesDirty(dstAttr.node)
dstAttr.valueChanged.emit()
dstAttr.isLinkChanged.emit()
edge.src.hasOutputConnectionsChanged.emit()
def getDepth(self, node, minimal=False):
""" Return node's depth in this Graph.
By default, returns the maximal depth of the node unless minimal is set to True.
Args:
node (Node): the node to consider.
minimal (bool): whether to return the minimal depth instead of the maximal one (default).
Returns:
int: the node's depth in this Graph.
"""
assert node.graph == self
assert not self.dirtyTopology
minDepth, maxDepth = self._nodesMinMaxDepths[node]
return minDepth if minimal else maxDepth
def getInputEdges(self, node, dependenciesOnly):
return set([edge for edge in self.getEdges(dependenciesOnly=dependenciesOnly) if edge.dst.node is node])
def _getInputEdgesPerNode(self, dependenciesOnly):
nodeEdges = defaultdict(set)
for edge in self.getEdges(dependenciesOnly=dependenciesOnly):
nodeEdges[edge.dst.node].add(edge.src.node)
return nodeEdges
def _getOutputEdgesPerNode(self, dependenciesOnly):
nodeEdges = defaultdict(set)
for edge in self.getEdges(dependenciesOnly=dependenciesOnly):
nodeEdges[edge.src.node].add(edge.dst.node)
return nodeEdges
def dfs(self, visitor, startNodes=None, longestPathFirst=False):
# Default direction (visitor.reverse=False): from node to root
# Reverse direction (visitor.reverse=True): from node to leaves
nodeChildren = self._getOutputEdgesPerNode(visitor.dependenciesOnly) \
if visitor.reverse else self._getInputEdgesPerNode(visitor.dependenciesOnly)
# Initialize color map
colors = {}
for u in self._nodes:
colors[u] = WHITE
if longestPathFirst and visitor.reverse:
# Because we have no knowledge of the node's count between a node and its leaves,
# it is not possible to handle this case at the moment
raise NotImplementedError("Graph.dfs(): longestPathFirst=True and visitor.reverse=True are not "
"compatible yet.")
nodes = startNodes or (self.getRootNodes(visitor.dependenciesOnly)
if visitor.reverse else self.getLeafNodes(visitor.dependenciesOnly))
if longestPathFirst:
# Graph topology must be known and node depths up-to-date
assert not self.dirtyTopology
nodes = sorted(nodes, key=lambda item: item.depth)
try:
for node in nodes:
self.dfsVisit(node, visitor, colors, nodeChildren, longestPathFirst)
except StopGraphVisit:
pass
def dfsVisit(self, u, visitor, colors, nodeChildren, longestPathFirst):
try:
self._dfsVisit(u, visitor, colors, nodeChildren, longestPathFirst)
except StopBranchVisit:
pass
def _dfsVisit(self, u, visitor, colors, nodeChildren, longestPathFirst):
colors[u] = GRAY
visitor.discoverVertex(u, self)
# d_time[u] = time = time + 1
children = nodeChildren[u]
if longestPathFirst:
assert not self.dirtyTopology
children = sorted(children, reverse=True, key=lambda item: self._nodesMinMaxDepths[item][1])
for v in children:
visitor.examineEdge((u, v), self)
if colors[v] == WHITE:
visitor.treeEdge((u, v), self)
# (u,v) is a tree edge
self.dfsVisit(v, visitor, colors, nodeChildren, longestPathFirst) # TODO: avoid recursion
elif colors[v] == GRAY:
# (u,v) is a back edge
visitor.backEdge((u, v), self)
elif colors[v] == BLACK:
# (u,v) is a cross or forward edge
visitor.forwardOrCrossEdge((u, v), self)
visitor.finishEdge((u, v), self)
colors[u] = BLACK
visitor.finishVertex(u, self)
def dfsOnFinish(self, startNodes=None, longestPathFirst=False, reverse=False, dependenciesOnly=False):
"""
Return the node chain from startNodes to the graph roots/leaves.
Order is defined by the visit and finishVertex event.
Args:
startNodes (Node list): the nodes to start the visit from.
longestPathFirst (bool): (optional) if multiple paths, nodes belonging to
the longest one will be visited first.
reverse (bool): (optional) direction of visit.
True is for getting nodes depending on the startNodes (to leaves).
False is for getting nodes required for the startNodes (to roots).
Returns:
The list of nodes and edges, from startNodes to the graph roots/leaves following edges.
"""
nodes = []
edges = []
visitor = Visitor(reverse=reverse, dependenciesOnly=dependenciesOnly)
visitor.finishVertex = lambda vertex, graph: nodes.append(vertex)
visitor.finishEdge = lambda edge, graph: edges.append(edge)
self.dfs(visitor=visitor, startNodes=startNodes, longestPathFirst=longestPathFirst)
return nodes, edges
def dfsOnDiscover(self, startNodes=None, filterTypes=None, longestPathFirst=False, reverse=False, dependenciesOnly=False):
"""
Return the node chain from startNodes to the graph roots/leaves.
Order is defined by the visit and discoverVertex event.
Args:
startNodes (Node list): the nodes to start the visit from.
filterTypes (str list): (optional) only return the nodes of the given types
(does not stop the visit, this is a post-process only)
longestPathFirst (bool): (optional) if multiple paths, nodes belonging to
the longest one will be visited first.
reverse (bool): (optional) direction of visit.
True is for getting nodes depending on the startNodes (to leaves).
False is for getting nodes required for the startNodes (to roots).
Returns:
The list of nodes and edges, from startNodes to the graph roots/leaves following edges.
"""
nodes = []
edges = []
visitor = Visitor(reverse=reverse, dependenciesOnly=dependenciesOnly)
def discoverVertex(vertex, graph):
if not filterTypes or vertex.nodeType in filterTypes:
nodes.append(vertex)
visitor.discoverVertex = discoverVertex
visitor.examineEdge = lambda edge, graph: edges.append(edge)
self.dfs(visitor=visitor, startNodes=startNodes, longestPathFirst=longestPathFirst)
return nodes, edges
def dfsToProcess(self, startNodes=None):
"""
Return the full list of predecessor nodes to process in order to compute the given nodes.
Args:
startNodes: list of starting nodes. Use all leaves if empty.
Returns:
visited nodes and edges that are not already computed (node.status != SUCCESS).
The order is defined by the visit and finishVertex event.
"""
nodes = []
edges = []
visitor = Visitor(reverse=False, dependenciesOnly=True)
def discoverVertex(vertex, graph):
if vertex.hasStatus(Status.SUCCESS):
# stop branch visit if discovering a node already computed
raise StopBranchVisit()
def finishVertex(vertex, graph):
chunksToProcess = []
for chunk in vertex.chunks:
if chunk.status.status is not Status.SUCCESS:
chunksToProcess.append(chunk)
if chunksToProcess:
nodes.append(vertex) # We could collect specific chunks
def finishEdge(edge, graph):
if edge[0].isComputed or edge[1].isComputed:
return
edges.append(edge)
visitor.finishVertex = finishVertex
visitor.finishEdge = finishEdge
visitor.discoverVertex = discoverVertex
self.dfs(visitor=visitor, startNodes=startNodes)
return nodes, edges
@Slot(Node, result=bool)
def canComputeTopologically(self, node):
"""
Return the computability of a node based on itself and its dependency chain.
It is a static result as it depends on the graph topology.
Computation can't happen for:
- CompatibilityNodes
- nodes having a non-computed CompatibilityNode in its dependency chain
Args:
node (Node): the node to evaluate
Returns:
bool: whether the node can be computed
"""
if isinstance(node, CompatibilityNode):
return False
return not self._computationBlocked[node]
def updateNodesTopologicalData(self):
"""
Compute and cache nodes topological data:
- min and max depth
- computability
"""
self._nodesMinMaxDepths.clear()
self._computationBlocked.clear()
compatNodes = []
visitor = Visitor(reverse=False, dependenciesOnly=False)
def discoverVertex(vertex, graph):
# initialize depths
self._nodesMinMaxDepths[vertex] = (0, 0)
# initialize computability
self._computationBlocked[vertex] = False
if isinstance(vertex, CompatibilityNode):
compatNodes.append(vertex)
# a not computed CompatibilityNode blocks computation
if not vertex.hasStatus(Status.SUCCESS):
self._computationBlocked[vertex] = True
def finishEdge(edge, graph):
currentVertex, inputVertex = edge
# update depths
currentDepths = self._nodesMinMaxDepths[currentVertex]
inputDepths = self._nodesMinMaxDepths[inputVertex]
if currentDepths[0] == 0:
# if not initialized, set the depth of the first child
depthMin = inputDepths[0] + 1
else:
depthMin = min(currentDepths[0], inputDepths[0] + 1)
self._nodesMinMaxDepths[currentVertex] = (depthMin, max(currentDepths[1], inputDepths[1] + 1))
# update computability
if currentVertex.hasStatus(Status.SUCCESS):
# output is already computed and available,
# does not depend on input connections computability
return
# propagate inputVertex computability
self._computationBlocked[currentVertex] |= self._computationBlocked[inputVertex]
leaves = self.getLeafNodes(visitor.dependenciesOnly)
visitor.finishEdge = finishEdge
visitor.discoverVertex = discoverVertex
self.dfs(visitor=visitor, startNodes=leaves)
# update graph computability status
canComputeLeaves = all([self.canComputeTopologically(node) for node in leaves])
if self._canComputeLeaves != canComputeLeaves:
self._canComputeLeaves = canComputeLeaves
self.canComputeLeavesChanged.emit()
# update compatibilityNodes model
if len(self._compatibilityNodes) != len(compatNodes):
self._compatibilityNodes.reset(compatNodes)
compatibilityNodes = Property(BaseObject, lambda self: self._compatibilityNodes, constant=True)
def dfsMaxEdgeLength(self, startNodes=None, dependenciesOnly=True):
"""
:param startNodes: list of starting nodes. Use all leaves if empty.
:return:
"""
nodesStack = []
edgesScore = defaultdict(lambda: 0)
visitor = Visitor(reverse=False, dependenciesOnly=dependenciesOnly)
def finishEdge(edge, graph):
u, v = edge
for i, n in enumerate(reversed(nodesStack)):
index = i + 1
if index > edgesScore[(n, v)]:
edgesScore[(n, v)] = index
def finishVertex(vertex, graph):
v = nodesStack.pop()
assert v == vertex
visitor.discoverVertex = lambda vertex, graph: nodesStack.append(vertex)
visitor.finishVertex = finishVertex
visitor.finishEdge = finishEdge
self.dfs(visitor=visitor, startNodes=startNodes, longestPathFirst=True)
return edgesScore
def flowEdges(self, startNodes=None, dependenciesOnly=True):
"""
Return as few edges as possible, such that if there is a directed path from one vertex to another in the
original graph, there is also such a path in the reduction.
:param startNodes:
:return: the remaining edges after a transitive reduction of the graph.
"""
flowEdges = []
edgesScore = self.dfsMaxEdgeLength(startNodes, dependenciesOnly)
for link, score in edgesScore.items():
assert score != 0
if score == 1:
flowEdges.append(link)
return flowEdges
def getEdges(self, dependenciesOnly=False):
if not dependenciesOnly:
return self.edges
outEdges = []
for e in self.edges:
attr = e.src
if dependenciesOnly:
if attr.isLink:
attr = attr.getLinkParam(recursive=True)
if not attr.isOutput:
continue
newE = Edge(attr, e.dst)
outEdges.append(newE)
return outEdges
def getInputNodes(self, node, recursive, dependenciesOnly):
""" Return either the first level input nodes of a node or the whole chain. """
if not recursive:
return set([edge.src.node for edge in self.getEdges(dependenciesOnly) if edge.dst.node is node])
inputNodes, edges = self.dfsOnDiscover(startNodes=[node], filterTypes=None, reverse=False)
return inputNodes[1:] # exclude current node
def getOutputNodes(self, node, recursive, dependenciesOnly):
""" Return either the first level output nodes of a node or the whole chain. """
if not recursive:
return set([edge.dst.node for edge in self.getEdges(dependenciesOnly) if edge.src.node is node])
outputNodes, edges = self.dfsOnDiscover(startNodes=[node], filterTypes=None, reverse=True)
return outputNodes[1:] # exclude current node
@Slot(Node, result=int)
def canSubmitOrCompute(self, startNode):
"""
Check if a node can be submitted/computed.
It does not depend on the topology of the graph and is based on the node status and its dependencies.
Returns:
int: 0 = cannot be submitted or computed /
1 = can be computed /
2 = can be submitted /
3 = can be submitted and computed
"""
if startNode.isAlreadySubmittedOrFinished():
return 0
class SCVisitor(Visitor):
def __init__(self, reverse, dependenciesOnly):
super(SCVisitor, self).__init__(reverse, dependenciesOnly)
canCompute = True
canSubmit = True
def discoverVertex(self, vertex, graph):
if vertex.isAlreadySubmitted():
self.canSubmit = False
if vertex.isExtern():
self.canCompute = False
visitor = SCVisitor(reverse=False, dependenciesOnly=True)
self.dfs(visitor=visitor, startNodes=[startNode])
return visitor.canCompute + (2 * visitor.canSubmit)
def _applyExpr(self):
with GraphModification(self):
for node in self._nodes:
node._applyExpr()
def toDict(self):
nodes = {k: node.toDict() for k, node in self._nodes.objects.items()}
nodes = dict(sorted(nodes.items()))
return nodes
@Slot(result=str)
def asString(self):
return str(self.toDict())
def copy(self) -> "Graph":
"""Create a copy of this Graph instance."""
graph = Graph("")
graph._deserialize(self.serialize())
return graph
def serialize(self, asTemplate: bool = False) -> dict:
"""Serialize this Graph instance.
Args:
asTemplate: Whether to use the template serialization.
Returns:
The serialized graph data.
"""
SerializerClass = TemplateGraphSerializer if asTemplate else GraphSerializer
return SerializerClass(self).serialize()
def serializePartial(self, nodes: list[Node]) -> dict:
"""Partially serialize this graph considering only the given list of `nodes`.
Args:
nodes: The list of nodes to serialize.
Returns:
The serialized graph data.
"""
return PartialGraphSerializer(self, nodes=nodes).serialize()
def save(self, filepath=None, setupProjectFile=True, template=False):
"""
Save the current Meshroom graph as a serialized ".mg" file.
Args:
filepath: project filepath to save as.
setupProjectFile: Store the reference to the project file and setup the cache directory.
If false, it only saves the graph of the project file as a template.
template: If true, saves the current graph as a template.
"""
# Update the saving flag indicating that the current graph is being saved
self._saving = True
try:
self._save(filepath=filepath, setupProjectFile=setupProjectFile, template=template)
finally:
self._saving = False
def _save(self, filepath=None, setupProjectFile=True, template=False):
path = filepath or self._filepath
if not path:
raise ValueError("filepath must be specified for unsaved files.")
data = self.serialize(template)
with open(path, 'w') as jsonFile:
json.dump(data, jsonFile, indent=4)
if path != self._filepath and setupProjectFile:
self._setFilepath(path)
# update the file date version
self._fileDateVersion = os.path.getmtime(path)
def _setFilepath(self, filepath):
"""
Set the internal filepath of this Graph.
This method should not be used directly from outside, use save/load instead.
Args:
filepath: the graph file path
"""
if not os.path.isfile(filepath):
self._unsetFilepath()
return
if self._filepath == filepath:
return
self._filepath = filepath
# For now:
# * cache folder is located next to the graph file
# * graph name if the basename of the graph file
self.name = os.path.splitext(os.path.basename(filepath))[0]
self.cacheDir = os.path.join(os.path.abspath(os.path.dirname(filepath)), meshroom.core.cacheFolderName)
self.filepathChanged.emit()
def _unsetFilepath(self):
self._filepath = ""
self.name = ""
self.cacheDir = meshroom.core.defaultCacheFolder
self.filepathChanged.emit()
def updateInternals(self, startNodes=None, force=False):
nodes, edges = self.dfsOnFinish(startNodes=startNodes)
for node in nodes:
if node.dirty or force:
node.updateInternals()
def updateStatusFromCache(self, force=False):
for node in self._nodes:
if node.dirty or force:
node.updateStatusFromCache()
def updateStatisticsFromCache(self):
for node in self._nodes:
node.updateStatisticsFromCache()
def updateNodesPerUid(self):
""" Update the duplicate nodes (sharing same UID) list of each node. """
# First step is to construct a map UID/nodes
nodesPerUid = {}
for node in self.nodes:
uid = node._uid
# We try to add the node to the list corresponding to this UID
try:
nodesPerUid.get(uid).append(node)
# If it fails because the uid is not in the map, we add it
except AttributeError:
nodesPerUid.update({uid: [node]})
# Now, update each individual node
for node in self.nodes:
node.updateDuplicates(nodesPerUid)
def update(self):
if not self._updateEnabled:
# To do the update once for multiple changes
self._updateRequested = True
return
self.updateInternals()
if os.path.exists(self._cacheDir):
self.updateStatusFromCache()
for node in self.nodes:
node.dirty = False
self.updateNodesPerUid()
# Graph topology has changed
if self.dirtyTopology:
# update nodes topological data cache
self.updateNodesTopologicalData()
self.dirtyTopology = False
self.updated.emit()
def markNodesDirty(self, fromNode):
"""
Mark all nodes following 'fromNode' as dirty.
All nodes marked as dirty will get their outputs to be re-evaluated
during the next graph update.
Args:
fromNode (Node): the node to start the invalidation from
See Also:
Graph.update, Graph.updateInternals, Graph.updateStatusFromCache
"""
nodes, edges = self.dfsOnDiscover(startNodes=[fromNode], reverse=True)
for node in nodes:
node.dirty = True
def stopExecution(self):
""" Request graph execution to be stopped by terminating running chunks"""
for chunk in self.iterChunksByStatus(Status.RUNNING):
if not chunk.isExtern():
chunk.stopProcess()
@Slot()
def forceUnlockNodes(self):
""" Force to unlock all the nodes. """
for node in self.nodes:
node.setLocked(False)
@Slot()
def clearSubmittedNodes(self):
""" Reset the status of already submitted nodes to Status.NONE """
for node in self.nodes:
node.clearSubmittedChunks()
def clearLocallySubmittedNodes(self):
""" Reset the status of already locally submitted nodes to Status.NONE """
for node in self.nodes:
node.clearLocallySubmittedChunks()
def iterChunksByStatus(self, status):
""" Iterate over NodeChunks with the given status """
for node in self.nodes:
for chunk in node.chunks:
if chunk.status.status == status:
yield chunk
def getChunksByStatus(self, status):
""" Return the list of NodeChunks with the given status """
chunks = []
for node in self.nodes:
chunks += [chunk for chunk in node.chunks if chunk.status.status == status]
return chunks
def getChunks(self, nodes=None):
""" Returns the list of NodeChunks for the given list of nodes (for all nodes if nodes is None) """
chunks = []
for node in nodes or self.nodes:
chunks += [chunk for chunk in node.chunks]
return chunks
def getOrderedChunks(self):
""" Get chunks as visited by dfsOnFinish.
Returns:
list of NodeChunks: the ordered list of NodeChunks
"""
return self.getChunks(self.dfsOnFinish()[0])
@property
def nodes(self):
return self._nodes
@property
def edges(self):
return self._edges
@property
def cacheDir(self):
return self._cacheDir
@cacheDir.setter
def cacheDir(self, value):
if self._cacheDir == value:
return
# use unix-style paths for cache directory
self._cacheDir = value.replace(os.path.sep, "/")
self.updateInternals(force=True)
self.updateStatusFromCache(force=True)
self.cacheDirChanged.emit()
@property
def fileDateVersion(self):
return self._fileDateVersion
@fileDateVersion.setter
def fileDateVersion(self, value):
self._fileDateVersion = value
@Slot(str, result=float)
def getFileDateVersionFromPath(self, value):
return os.path.getmtime(value)
def setVerbose(self, v):
with GraphModification(self):
for node in self._nodes:
if node.hasAttribute('verbose'):
try:
node.verbose.value = v
except Exception:
pass
nodes = Property(BaseObject, nodes.fget, constant=True)
edges = Property(BaseObject, edges.fget, constant=True)
filepathChanged = Signal()
filepath = Property(str, lambda self: self._filepath, notify=filepathChanged)
isSaving = Property(bool, isSaving.fget, constant=True)
fileReleaseVersion = Property(str, lambda self: self.header.get(GraphIO.Keys.ReleaseVersion, "0.0"),
notify=filepathChanged)
fileDateVersion = Property(float, fileDateVersion.fget, fileDateVersion.fset, notify=filepathChanged)
cacheDirChanged = Signal()
cacheDir = Property(str, cacheDir.fget, cacheDir.fset, notify=cacheDirChanged)
updated = Signal()
canComputeLeavesChanged = Signal()
canComputeLeaves = Property(bool, lambda self: self._canComputeLeaves, notify=canComputeLeavesChanged)
def loadGraph(filepath, strictCompatibility: bool = False) -> Graph:
"""
Load a Graph from a Meshroom Graph (.mg) file.
Args:
filepath: The path to the Meshroom Graph file.
strictCompatibility: If True, raise a GraphCompatibilityError if the loaded Graph has node compatibility issues.
Returns:
Graph: The loaded Graph instance.
Raises:
GraphCompatibilityError: If the Graph has node compatibility issues and `strictCompatibility` is True.
"""
graph = Graph("")
graph.load(filepath)
compatibilityIssues = len(graph.compatibilityNodes) > 0
if compatibilityIssues and strictCompatibility:
raise GraphCompatibilityError(filepath, {n.name: str(n.issue) for n in graph.compatibilityNodes})
graph.update()
return graph
def getAlreadySubmittedChunks(nodes):
out = []
for node in nodes:
for chunk in node.chunks:
if chunk.isAlreadySubmitted():
out.append(chunk)
return out
def executeGraph(graph, toNodes=None, forceCompute=False, forceStatus=False):
"""
"""
if forceCompute:
nodes, edges = graph.dfsOnFinish(startNodes=toNodes)
else:
nodes, edges = graph.dfsToProcess(startNodes=toNodes)
chunksInConflict = getAlreadySubmittedChunks(nodes)
if chunksInConflict:
chunksStatus = set([chunk.status.status.name for chunk in chunksInConflict])
chunksName = [node.name for node in chunksInConflict]
msg = 'WARNING: Some nodes are already submitted with status: {}\nNodes: {}'.format(
', '.join(chunksStatus),
', '.join(chunksName)
)
if forceStatus:
print(msg)
else:
raise RuntimeError(msg)
print('Nodes to execute: ', str([n.name for n in nodes]))
for node in nodes:
node.beginSequence(forceCompute)
for n, node in enumerate(nodes):
try:
node.preprocess()
multiChunks = len(node.chunks) > 1
for c, chunk in enumerate(node.chunks):
if multiChunks:
print('\n[{node}/{nbNodes}]({chunk}/{nbChunks}) {nodeName}'.format(
node=n+1, nbNodes=len(nodes),
chunk=c+1, nbChunks=len(node.chunks), nodeName=node.nodeType))
else:
print('\n[{node}/{nbNodes}] {nodeName}'.format(
node=n + 1, nbNodes=len(nodes), nodeName=node.nodeType))
chunk.process(forceCompute)
node.postprocess()
except Exception as e:
logging.error(f"Error on node computation: {e}")
graph.clearSubmittedNodes()
raise
for node in nodes:
node.endSequence()
def submitGraph(graph, submitter, toNodes=None, submitLabel="{projectName}"):
nodesToProcess, edgesToProcess = graph.dfsToProcess(startNodes=toNodes)
flowEdges = graph.flowEdges(startNodes=toNodes)
edgesToProcess = set(edgesToProcess).intersection(flowEdges)
if not nodesToProcess:
logging.warning('Nothing to compute')
return
logging.info("Nodes to process: {}".format(edgesToProcess))
logging.info("Edges to process: {}".format(edgesToProcess))
sub = None
if submitter:
sub = meshroom.core.submitters.get(submitter, None)
elif len(meshroom.core.submitters) == 1:
# if only one submitter available use it
sub = meshroom.core.submitters.values()[0]
if sub is None:
raise RuntimeError("Unknown Submitter: '{submitter}'. Available submitters are: '{allSubmitters}'.".format(
submitter=submitter, allSubmitters=str(meshroom.core.submitters.keys())))
try:
res = sub.submit(nodesToProcess, edgesToProcess, graph.filepath, submitLabel=submitLabel)
if res:
for node in nodesToProcess:
node.submit() # update node status
except Exception as e:
logging.error("Error on submit : {}".format(e))
def submit(graphFile, submitter, toNode=None, submitLabel="{projectName}"):
"""
Submit the given graph via the given submitter.
"""
graph = loadGraph(graphFile)
toNodes = graph.findNodes(toNode) if toNode else None
submitGraph(graph, submitter, toNodes, submitLabel=submitLabel)