Meshroom/meshroom/nodes/aliceVision/LdrToHdrMerge.py

260 lines
11 KiB
Python

__version__ = "4.0"
import json
from meshroom.core import desc
def findMetadata(d, keys, defaultValue):
v = None
for key in keys:
v = d.get(key, None)
k = key.lower()
if v is not None:
return v
for dk, dv in d.items():
dkm = dk.lower().replace(" ", "")
if dkm == key.lower():
return dv
dkm = dkm.split(":")[-1]
dkm = dkm.split("/")[-1]
if dkm == k:
return dv
return defaultValue
class LdrToHdrMerge(desc.AVCommandLineNode):
commandLine = 'aliceVision_LdrToHdrMerge {allParams}'
size = desc.DynamicNodeSize('input')
parallelization = desc.Parallelization(blockSize=2)
commandLineRange = '--rangeStart {rangeStart} --rangeSize {rangeBlockSize}'
category = 'Panorama HDR'
documentation = '''
Calibrate LDR to HDR response curve from samples
'''
inputs = [
desc.File(
name='input',
label='Input',
description='SfMData file.',
value='',
uid=[0],
),
desc.File(
name='response',
label='Response file',
description='Response file',
value='',
uid=[0],
),
desc.IntParam(
name='userNbBrackets',
label='Number of Brackets',
description='Number of exposure brackets per HDR image (0 for automatic detection).',
value=0,
range=(0, 15, 1),
uid=[],
group='user', # not used directly on the command line
),
desc.IntParam(
name='nbBrackets',
label='Automatic Nb Brackets',
description='Number of exposure brackets used per HDR image. It is detected automatically from input Viewpoints metadata if "userNbBrackets" is 0, else it is equal to "userNbBrackets".',
value=0,
range=(0, 10, 1),
uid=[0],
),
desc.IntParam(
name='offsetRefBracketIndex',
label='Offset Ref Bracket Index',
description='Zero to use the center bracket. +N to use a more exposed bracket or -N to use a less exposed backet.',
value=1,
range=(-4, 4, 1),
uid=[0],
enabled= lambda node: node.nbBrackets.value != 1,
),
desc.BoolParam(
name='byPass',
label='Bypass',
description="Bypass HDR creation and use the medium bracket as the source for the next steps.",
value=False,
uid=[0],
enabled= lambda node: node.nbBrackets.value != 1,
),
desc.ChoiceParam(
name='fusionWeight',
label='Fusion Weight',
description="Weight function used to fuse all LDR images together:\n"
" * gaussian \n"
" * triangle \n"
" * plateau",
value='gaussian',
values=['gaussian', 'triangle', 'plateau'],
exclusive=True,
uid=[0],
enabled= lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.IntParam(
name='channelQuantizationPower',
label='Channel Quantization Power',
description='Quantization level like 8 bits or 10 bits.',
value=10,
range=(8, 14, 1),
uid=[0],
advanced=True,
enabled= lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.BoolParam(
name='enableHighlight',
label='Enable Highlight',
description="Enable highlights correction.",
value=False,
uid=[0],
group='user', # not used directly on the command line
enabled= lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.FloatParam(
name='highlightCorrectionFactor',
label='Highlights Correction',
description='Pixels saturated in all input images have a partial information about their real luminance.\n'
'We only know that the value should be >= to the standard hdr fusion.\n'
'This parameter allows to perform a post-processing step to put saturated pixels to a constant\n'
'value defined by the `highlightsMaxLuminance` parameter.\n'
'This parameter is float to enable to weight this correction.',
value=1.0,
range=(0.0, 1.0, 0.01),
uid=[0],
enabled= lambda node: node.enableHighlight.enabled and node.enableHighlight.value,
),
desc.FloatParam(
name='highlightTargetLux',
label='Highlight Target Luminance (Lux)',
description='This is an arbitrary target value (in Lux) used to replace the unknown luminance value of the saturated pixels.\n'
'\n'
'Some Outdoor Reference Light Levels:\n'
' * 120,000 lux: Brightest sunlight\n'
' * 110,000 lux: Bright sunlight\n'
' * 20,000 lux: Shade illuminated by entire clear blue sky, midday\n'
' * 1,000 lux: Typical overcast day, midday\n'
' * 400 lux: Sunrise or sunset on a clear day\n'
' * 40 lux: Fully overcast, sunset/sunrise\n'
'\n'
'Some Indoor Reference Light Levels:\n'
' * 20000 lux: Max Usually Used Indoor\n'
' * 750 lux: Supermarkets\n'
' * 500 lux: Office Work\n'
' * 150 lux: Home\n',
value=120000.0,
range=(1000.0, 150000.0, 1.0),
uid=[0],
enabled= lambda node: node.enableHighlight.enabled and node.enableHighlight.value and node.highlightCorrectionFactor.value != 0,
),
desc.ChoiceParam(
name='storageDataType',
label='Storage Data Type',
description='Storage image data type:\n'
' * float: Use full floating point (32 bits per channel)\n'
' * half: Use half float (16 bits per channel)\n'
' * halfFinite: Use half float, but clamp values to avoid non-finite values\n'
' * auto: Use half float if all values can fit, else use full float\n',
value='float',
values=['float', 'half', 'halfFinite', 'auto'],
exclusive=True,
uid=[0],
),
desc.ChoiceParam(
name='verboseLevel',
label='Verbose Level',
description='verbosity level (fatal, error, warning, info, debug, trace).',
value='info',
values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'],
exclusive=True,
uid=[],
)
]
outputs = [
desc.File(
name='outSfMData',
label='SfMData File',
description='Path to the output sfmdata file',
value=desc.Node.internalFolder + 'sfmData.sfm',
uid=[],
)
]
@classmethod
def update(cls, node):
if not isinstance(node.nodeDesc, cls):
raise ValueError("Node {} is not an instance of type {}".format(node, cls))
# TODO: use Node version for this test
if 'userNbBrackets' not in node.getAttributes().keys():
# Old version of the node
return
if node.userNbBrackets.value != 0:
node.nbBrackets.value = node.userNbBrackets.value
return
# logging.info("[LDRToHDR] Update start: version:" + str(node.packageVersion))
cameraInitOutput = node.input.getLinkParam(recursive=True)
if not cameraInitOutput:
node.nbBrackets.value = 0
return
if not cameraInitOutput.node.hasAttribute('viewpoints'):
if cameraInitOutput.node.hasAttribute('input'):
cameraInitOutput = cameraInitOutput.node.input.getLinkParam(recursive=True)
if cameraInitOutput and cameraInitOutput.node and cameraInitOutput.node.hasAttribute('viewpoints'):
viewpoints = cameraInitOutput.node.viewpoints.value
else:
# No connected CameraInit
node.nbBrackets.value = 0
return
# logging.info("[LDRToHDR] Update start: nb viewpoints:" + str(len(viewpoints)))
inputs = []
for viewpoint in viewpoints:
jsonMetadata = viewpoint.metadata.value
if not jsonMetadata:
# no metadata, we cannot found the number of brackets
node.nbBrackets.value = 0
return
d = json.loads(jsonMetadata)
fnumber = findMetadata(d, ["FNumber", "Exif:ApertureValue", "ApertureValue", "Aperture"], "")
shutterSpeed = findMetadata(d, ["Exif:ShutterSpeedValue", "ShutterSpeedValue", "ShutterSpeed"], "")
iso = findMetadata(d, ["Exif:ISOSpeedRatings", "ISOSpeedRatings", "ISO"], "")
if not fnumber and not shutterSpeed:
# If one image without shutter or fnumber, we cannot found the number of brackets.
# We assume that there is no multi-bracketing, so nothing to do.
node.nbBrackets.value = 1
return
inputs.append((viewpoint.path.value, (fnumber, shutterSpeed, iso)))
inputs.sort()
exposureGroups = []
exposures = []
for path, exp in inputs:
if exposures and exp != exposures[-1] and exp == exposures[0]:
exposureGroups.append(exposures)
exposures = [exp]
else:
exposures.append(exp)
exposureGroups.append(exposures)
exposures = None
bracketSizes = set()
if len(exposureGroups) == 1:
if len(set(exposureGroups[0])) == 1:
# Single exposure and multiple views
node.nbBrackets.value = 1
else:
# Single view and multiple exposures
node.nbBrackets.value = len(exposureGroups[0])
else:
for expGroup in exposureGroups:
bracketSizes.add(len(expGroup))
if len(bracketSizes) == 1:
node.nbBrackets.value = bracketSizes.pop()
# logging.info("[LDRToHDR] nb bracket size:" + str(node.nbBrackets.value))
else:
node.nbBrackets.value = 0
# logging.info("[LDRToHDR] Update end")