mirror of
https://github.com/alicevision/Meshroom.git
synced 2025-05-12 00:26:52 +02:00
156 lines
6.3 KiB
Python
156 lines
6.3 KiB
Python
__version__ = "1.0"
|
|
|
|
import os
|
|
from meshroom.core import desc
|
|
|
|
|
|
class ImageMatchingMultiSfM(desc.AVCommandLineNode):
|
|
commandLine = 'aliceVision_imageMatching {allParams}'
|
|
# use both SfM inputs to define Node's size
|
|
size = desc.MultiDynamicNodeSize(['input', 'inputB'])
|
|
|
|
category = 'Sparse Reconstruction'
|
|
documentation = '''
|
|
The goal of this node is to select the image pairs to match in the context of an SfM augmentation.
|
|
The ambition is to find the images that are looking to the same areas of the scene.
|
|
Thanks to this node, the FeatureMatching node will only compute the matches between the selected image pairs.
|
|
|
|
## Online
|
|
[https://alicevision.org/#photogrammetry/image_matching](https://alicevision.org/#photogrammetry/image_matching)
|
|
'''
|
|
inputs = [
|
|
desc.File(
|
|
name='input',
|
|
label='Input A',
|
|
description='SfMData file .',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='inputB',
|
|
label='Input B',
|
|
description='SfMData file .',
|
|
value='',
|
|
uid=[0],
|
|
),
|
|
desc.ListAttribute(
|
|
elementDesc=desc.File(
|
|
name="featuresFolder",
|
|
label="Features Folder",
|
|
description="",
|
|
value="",
|
|
uid=[0],
|
|
),
|
|
name="featuresFolders",
|
|
label="Features Folders",
|
|
description="Folder(s) containing the extracted features and descriptors."
|
|
),
|
|
desc.ChoiceParam(
|
|
name='method',
|
|
label='Method',
|
|
description='Method used to select the image pairs to match:\n'
|
|
' * VocabularyTree: It uses image retrieval techniques to find images that share some content without the cost of resolving all \n'
|
|
'feature matches in details. Each image is represented in a compact image descriptor which allows to compute the distance between all \n'
|
|
'images descriptors very efficiently. If your scene contains less than "Voc Tree: Minimal Number of Images", all image pairs will be selected.\n'
|
|
' * SequentialAndVocabularyTree: Combines sequential approach with VocTree to enable connections between keyframes at different times.\n'
|
|
' * Exhaustive: Export all image pairs.\n'
|
|
' * Frustum: If images have known poses, computes the intersection between cameras frustums to create the list of image pairs.\n'
|
|
' * FrustumOrVocabularyTree: If images have known poses, use frustum intersection else use VocabularyTree.\n',
|
|
value='SequentialAndVocabularyTree',
|
|
values=['VocabularyTree', 'SequentialAndVocabularyTree', 'Exhaustive', 'Frustum'],
|
|
exclusive=True,
|
|
uid=[0],
|
|
),
|
|
desc.File(
|
|
name='tree',
|
|
label='Voc Tree: Tree',
|
|
description='Input name for the vocabulary tree file.',
|
|
value='${ALICEVISION_VOCTREE}',
|
|
uid=[],
|
|
enabled=lambda node: 'VocabularyTree' in node.method.value,
|
|
),
|
|
desc.File(
|
|
name='weights',
|
|
label='Voc Tree: Weights',
|
|
description='Input name for the weight file, if not provided the weights will be computed on the database built with the provided set.',
|
|
value='',
|
|
uid=[0],
|
|
advanced=True,
|
|
enabled=lambda node: 'VocabularyTree' in node.method.value,
|
|
),
|
|
desc.ChoiceParam(
|
|
name='matchingMode',
|
|
label='Matching Mode',
|
|
description='The mode to combine image matching between the input SfMData A and B:\n"a/a+a/b" for A with A + A with B.\n"a/ab" for A with A and B.\n"a/b" for A with B.',
|
|
value='a/a+a/b',
|
|
values=['a/a+a/b','a/ab', 'a/b'],
|
|
exclusive=True,
|
|
uid=[0],
|
|
),
|
|
desc.IntParam(
|
|
name='minNbImages',
|
|
label='Voc Tree: Minimal Number of Images',
|
|
description='Minimal number of images to use the vocabulary tree. If we have less features than this threshold, we will compute all matching combinations.',
|
|
value=200,
|
|
range=(0, 500, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
enabled=lambda node: 'VocabularyTree' in node.method.value,
|
|
),
|
|
desc.IntParam(
|
|
name='maxDescriptors',
|
|
label='Voc Tree: Max Descriptors',
|
|
description='Limit the number of descriptors you load per image. Zero means no limit.',
|
|
value=500,
|
|
range=(0, 100000, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
enabled=lambda node: 'VocabularyTree' in node.method.value,
|
|
),
|
|
desc.IntParam(
|
|
name='nbMatches',
|
|
label='Voc Tree: Nb Matches',
|
|
description='The number of matches to retrieve for each image (If 0 it will retrieve all the matches).',
|
|
value=40,
|
|
range=(0, 1000, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
enabled=lambda node: 'VocabularyTree' in node.method.value,
|
|
),
|
|
desc.IntParam(
|
|
name='nbNeighbors',
|
|
label='Sequential: Nb Neighbors',
|
|
description='The number of neighbors to retrieve for each image (If 0 it will retrieve all the neighbors).',
|
|
value=5,
|
|
range=(0, 1000, 1),
|
|
uid=[0],
|
|
advanced=True,
|
|
enabled=lambda node: 'Sequential' in node.method.value,
|
|
),
|
|
desc.ChoiceParam(
|
|
name='verboseLevel',
|
|
label='Verbose Level',
|
|
description='verbosity level (fatal, error, warning, info, debug, trace).',
|
|
value='info',
|
|
values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'],
|
|
exclusive=True,
|
|
uid=[],
|
|
)
|
|
]
|
|
|
|
outputs = [
|
|
desc.File(
|
|
name='output',
|
|
label='List File',
|
|
description='Filepath to the output file with the list of selected image pairs.',
|
|
value=desc.Node.internalFolder + 'imageMatches.txt',
|
|
uid=[],
|
|
),
|
|
desc.File(
|
|
name='outputCombinedSfM',
|
|
label='Combined SfM',
|
|
description='Path for the combined SfMData file',
|
|
value=desc.Node.internalFolder + 'combineSfM.sfm',
|
|
uid=[],
|
|
),
|
|
]
|