Meshroom/meshroom/nodes/aliceVision/LdrToHdrCalibration.py
2020-07-16 11:04:43 +02:00

197 lines
7.7 KiB
Python

__version__ = "2.0"
import json
from meshroom.core import desc
def findMetadata(d, keys, defaultValue):
v = None
for key in keys:
v = d.get(key, None)
k = key.lower()
if v is not None:
return v
for dk, dv in d.iteritems():
dkm = dk.lower().replace(" ", "")
if dkm == key.lower():
return dv
dkm = dkm.split(":")[-1]
dkm = dkm.split("/")[-1]
if dkm == k:
return dv
return defaultValue
class LdrToHdrCalibration(desc.CommandLineNode):
commandLine = 'aliceVision_LdrToHdrCalibration {allParams}'
size = desc.DynamicNodeSize('input')
documentation = '''
Calibrate LDR to HDR response curve from samples
'''
inputs = [
desc.File(
name='input',
label='Input',
description='SfMData file.',
value='',
uid=[0],
),
desc.File(
name='samples',
label='Samples folder',
description='Samples folder',
value=desc.Node.internalFolder,
uid=[0],
),
desc.ChoiceParam(
name='calibrationMethod',
label='Calibration Method',
description="Method used for camera calibration \n"
" * Linear: Disable the calibration and assumes a linear Camera Response Function. If images are encoded in a known colorspace (like sRGB for JPEG), the images will be automatically converted to linear. \n"
" * Debevec: This is the standard method for HDR calibration. \n"
" * Grossberg: Based on learned database of cameras, it allows to reduce the CRF to few parameters while keeping all the precision. \n"
" * Laguerre: Simple but robust method estimating the minimal number of parameters. \n"
" * Robertson: First method for HDR calibration in the literature. \n",
values=['linear', 'debevec', 'grossberg', 'laguerre'],
value='debevec',
exclusive=True,
uid=[0],
),
desc.ChoiceParam(
name='calibrationWeight',
label='Calibration Weight',
description="Weight function used to calibrate camera response \n"
" * default (automatically selected according to the calibrationMethod) \n"
" * gaussian \n"
" * triangle \n"
" * plateau",
value='default',
values=['default', 'gaussian', 'triangle', 'plateau'],
exclusive=True,
uid=[0],
),
desc.IntParam(
name='userNbBrackets',
label='Number of Brackets',
description='Number of exposure brackets per HDR image (0 for automatic detection).',
value=0,
range=(0, 15, 1),
uid=[0],
group='user', # not used directly on the command line
),
desc.IntParam(
name='nbBrackets',
label='Automatic Nb Brackets',
description='Number of exposure brackets used per HDR image. It is detected automatically from input Viewpoints metadata if "userNbBrackets" is 0, else it is equal to "userNbBrackets".',
value=0,
range=(0, 10, 1),
uid=[],
),
desc.IntParam(
name='channelQuantizationPower',
label='Channel Quantization Power',
description='Quantization level like 8 bits or 10 bits.',
value=10,
range=(8, 14, 1),
uid=[0],
advanced=True,
),
desc.IntParam(
name='maxTotalPoints',
label='Max Number of Points',
description='Max number of points selected by the sampling strategy.\n'
'This ensures that this sampling step will extract a number of pixels values\n'
'that the calibration step can manage (in term of computation time and memory usage).',
value=1000000,
range=(8, 10000000, 1000),
uid=[0],
advanced=True,
),
desc.ChoiceParam(
name='verboseLevel',
label='Verbose Level',
description='verbosity level (fatal, error, warning, info, debug, trace).',
value='info',
values=['fatal', 'error', 'warning', 'info', 'debug', 'trace'],
exclusive=True,
uid=[],
)
]
outputs = [
desc.File(
name='response',
label='Output response File',
description='Path to the output response file',
value=desc.Node.internalFolder + 'response.csv',
uid=[],
)
]
@classmethod
def update(cls, node):
if not isinstance(node.nodeDesc, cls):
raise ValueError("Node {} is not an instance of type {}".format(node, cls))
# TODO: use Node version for this test
if 'userNbBrackets' not in node.getAttributes().keys():
# Old version of the node
return
if node.userNbBrackets.value != 0:
node.nbBrackets.value = node.userNbBrackets.value
return
# logging.info("[LDRToHDR] Update start: version:" + str(node.packageVersion))
cameraInitOutput = node.input.getLinkParam(recursive=True)
if not cameraInitOutput:
node.nbBrackets.value = 0
return
if not cameraInitOutput.node.hasAttribute('viewpoints'):
if cameraInitOutput.node.hasAttribute('input'):
cameraInitOutput = cameraInitOutput.node.input.getLinkParam(recursive=True)
viewpoints = cameraInitOutput.node.viewpoints.value
# logging.info("[LDRToHDR] Update start: nb viewpoints:" + str(len(viewpoints)))
inputs = []
for viewpoint in viewpoints:
jsonMetadata = viewpoint.metadata.value
if not jsonMetadata:
# no metadata, we cannot found the number of brackets
node.nbBrackets.value = 0
return
d = json.loads(jsonMetadata)
fnumber = findMetadata(d, ["FNumber", "Exif:ApertureValue", "ApertureValue", "Aperture"], "")
shutterSpeed = findMetadata(d, ["Exif:ShutterSpeedValue", "ShutterSpeedValue", "ShutterSpeed"], "")
iso = findMetadata(d, ["Exif:ISOSpeedRatings", "ISOSpeedRatings", "ISO"], "")
if not fnumber and not shutterSpeed:
# If one image without shutter or fnumber, we cannot found the number of brackets.
# We assume that there is no multi-bracketing, so nothing to do.
node.nbBrackets.value = 1
return
inputs.append((viewpoint.path.value, (fnumber, shutterSpeed, iso)))
inputs.sort()
exposureGroups = []
exposures = []
for path, exp in inputs:
if exposures and exp != exposures[-1] and exp == exposures[0]:
exposureGroups.append(exposures)
exposures = [exp]
else:
exposures.append(exp)
exposureGroups.append(exposures)
exposures = None
bracketSizes = set()
if len(exposureGroups) == 1:
node.nbBrackets.value = 1
else:
for expGroup in exposureGroups:
bracketSizes.add(len(expGroup))
if len(bracketSizes) == 1:
node.nbBrackets.value = bracketSizes.pop()
# logging.info("[LDRToHDR] nb bracket size:" + str(node.nbBrackets.value))
else:
node.nbBrackets.value = 0
# logging.info("[LDRToHDR] Update end")