Meshroom/meshroom/nodes/aliceVision/LdrToHdrCalibration.py
Candice Bentéjac 3412a77b4d [nodes] LdrToHdrCalibration: Add intrinsic ID in the response file's path
The node outputs a response file that is named "response_INTRISICID.csv",
as determined in AliceVision. Without it, the output attribute refers
to a file that does not exist.
2023-12-21 16:24:01 +01:00

336 lines
14 KiB
Python

__version__ = "3.1"
import json
import math
import os
from collections import Counter
from meshroom.core import desc
def findMetadata(d, keys, defaultValue):
v = None
for key in keys:
v = d.get(key, None)
k = key.lower()
if v is not None:
return v
for dk, dv in d.items():
dkm = dk.lower().replace(" ", "")
if dkm == key.lower():
return dv
dkm = dkm.split(":")[-1]
dkm = dkm.split("/")[-1]
if dkm == k:
return dv
return defaultValue
class LdrToHdrCalibration(desc.AVCommandLineNode):
commandLine = 'aliceVision_LdrToHdrCalibration {allParams}'
size = desc.DynamicNodeSize('input')
cpu = desc.Level.INTENSIVE
ram = desc.Level.NORMAL
category = 'Panorama HDR'
documentation = '''
Calibrate LDR to HDR response curve from samples.
'''
inputs = [
desc.File(
name="input",
label="SfMData",
description="Input SfMData file.",
value="",
uid=[0],
),
desc.File(
name="samples",
label="Samples Folder",
description="Samples folder.",
value=desc.Node.internalFolder,
uid=[0],
),
desc.IntParam(
name="userNbBrackets",
label="Number Of Brackets",
description="Number of exposure brackets per HDR image (0 for automatic detection).",
value=0,
range=(0, 15, 1),
uid=[],
group="user", # not used directly on the command line
errorMessage="The set number of brackets is not a multiple of the number of input images.\n"
"Errors will occur during the computation."
),
desc.IntParam(
name="nbBrackets",
label="Automatic Nb Brackets",
description="Number of exposure brackets used per HDR image.\n"
"It is detected automatically from input Viewpoints metadata if 'userNbBrackets' is 0,\n"
"else it is equal to 'userNbBrackets'.",
value=0,
range=(0, 15, 1),
uid=[0],
group="bracketsParams"
),
desc.BoolParam(
name="byPass",
label="Bypass",
description="Bypass HDR creation and use the medium bracket as the source for the next steps.",
value=False,
uid=[0],
enabled=lambda node: node.nbBrackets.value != 1,
),
desc.ChoiceParam(
name="calibrationMethod",
label="Calibration Method",
description="Method used for camera calibration:\n"
" - Auto: If RAW images are detected, the 'Linear' calibration method will be used. Otherwise, the 'Debevec' calibration method will be used.\n"
" - Linear: Disables the calibration and assumes a linear Camera Response Function. If images are encoded in a known colorspace (like sRGB for JPEG), they will be automatically converted to linear.\n"
" - Debevec: Standard method for HDR calibration.\n"
" - Grossberg: Based on a learned database of cameras, allows to reduce the Camera Response Function to a few parameters while keeping all the precision.\n"
" - Laguerre: Simple but robust method estimating the minimal number of parameters.",
values=["auto", "linear", "debevec", "grossberg", "laguerre"],
value="auto",
exclusive=True,
uid=[0],
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.ChoiceParam(
name="calibrationWeight",
label="Calibration Weight",
description="Weight function used to calibrate camera response:\n"
" - default (automatically selected according to the calibrationMethod)\n"
" - gaussian\n"
" - triangle\n"
" - plateau",
value="default",
values=["default", "gaussian", "triangle", "plateau"],
exclusive=True,
uid=[0],
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.IntParam(
name="channelQuantizationPower",
label="Channel Quantization Power",
description="Quantization level like 8 bits or 10 bits.",
value=10,
range=(8, 14, 1),
uid=[0],
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.ChoiceParam(
name="workingColorSpace",
label="Working Color Space",
description="Color space in which the data are processed.\n"
"If 'auto' is selected, the working color space will be 'Linear' if RAW images are detected; otherwise, it will be set to 'sRGB'.",
value="auto",
values=["auto", "sRGB", "Linear", "ACES2065-1", "ACEScg"],
exclusive=True,
uid=[],
group="user", # not used directly on the command line
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.IntParam(
name="maxTotalPoints",
label="Max Number Of Points",
description="Maximum number of points used from the sampling.\n"
"This ensures that the number of pixels values extracted by the sampling\n"
"can be managed by the calibration step (in term of computation time and memory usage).",
value=1000000,
range=(8, 10000000, 1000),
uid=[0],
advanced=True,
enabled=lambda node: node.byPass.enabled and not node.byPass.value,
),
desc.ChoiceParam(
name="verboseLevel",
label="Verbose Level",
description="Verbosity level (fatal, error, warning, info, debug, trace).",
value="info",
values=["fatal", "error", "warning", "info", "debug", "trace"],
exclusive=True,
uid=[],
)
]
outputs = [
desc.File(
name="response",
label="Response File",
description="Path to the output response file.",
value=desc.Node.internalFolder + "response_<INTRINSIC_ID>.csv",
uid=[],
)
]
def processChunk(self, chunk):
if chunk.node.nbBrackets.value == 1:
return
# Trick to avoid sending --nbBrackets to the command line when the bracket detection is automatic.
# Otherwise, the AliceVision executable has no way of determining whether the bracket detection was automatic
# or if it was hard-set by the user.
self.commandLine = "aliceVision_LdrToHdrCalibration {allParams}"
if chunk.node.userNbBrackets.value == chunk.node.nbBrackets.value:
self.commandLine += "{bracketsParams}"
super(LdrToHdrCalibration, self).processChunk(chunk)
@classmethod
def update(cls, node):
if not isinstance(node.nodeDesc, cls):
raise ValueError("Node {} is not an instance of type {}".format(node, cls))
# TODO: use Node version for this test
if "userNbBrackets" not in node.getAttributes().keys():
# Old version of the node
return
node.userNbBrackets.validValue = True # Reset the status of "userNbBrackets"
cameraInitOutput = node.input.getLinkParam(recursive=True)
if not cameraInitOutput:
node.nbBrackets.value = 0
return
if node.userNbBrackets.value != 0:
# The number of brackets has been manually forced: check whether it is valid or not
if cameraInitOutput and cameraInitOutput.node and cameraInitOutput.node.hasAttribute("viewpoints"):
viewpoints = cameraInitOutput.node.viewpoints.value
# The number of brackets should be a multiple of the number of input images
if (len(viewpoints) % node.userNbBrackets.value != 0):
node.userNbBrackets.validValue = False
else:
node.userNbBrackets.validValue = True
node.nbBrackets.value = node.userNbBrackets.value
return
if not cameraInitOutput.node.hasAttribute("viewpoints"):
if cameraInitOutput.node.hasAttribute("input"):
cameraInitOutput = cameraInitOutput.node.input.getLinkParam(recursive=True)
if cameraInitOutput and cameraInitOutput.node and cameraInitOutput.node.hasAttribute("viewpoints"):
viewpoints = cameraInitOutput.node.viewpoints.value
else:
# No connected CameraInit
node.nbBrackets.value = 0
return
inputs = []
for viewpoint in viewpoints:
jsonMetadata = viewpoint.metadata.value
if not jsonMetadata:
# no metadata, we cannot find the number of brackets
node.nbBrackets.value = 0
return
d = json.loads(jsonMetadata)
# Find Fnumber
fnumber = findMetadata(d, ["FNumber"], "")
if fnumber == "":
aperture = findMetadata(d, ["Exif:ApertureValue", "ApertureValue", "Aperture"], "")
if aperture == "":
fnumber = -1.0
else:
fnumber = pow(2.0, aperture / 2.0)
# Get shutter speed and ISO
shutterSpeed = findMetadata(d, ["ExposureTime", "Exif:ShutterSpeedValue", "ShutterSpeedValue", "ShutterSpeed"], -1.0)
iso = findMetadata(d, ["Exif:PhotographicSensitivity", "PhotographicSensitivity", "Photographic Sensitivity", "ISO"], -1.0)
if not fnumber and not shutterSpeed:
# If one image without shutter or fnumber, we cannot found the number of brackets.
# We assume that there is no multi-bracketing, so nothing to do.
node.nbBrackets.value = 1
return
inputs.append((viewpoint.path.value, (float(fnumber), float(shutterSpeed), float(iso))))
inputs.sort()
exposureGroups = []
exposures = []
prevFnumber = 0.0
prevShutterSpeed = 0.0
prevIso = 0.0
prevPath = None # Stores the dirname of the previous parsed image
prevExposure = None
newGroup = False # True if a new exposure group needs to be created (useful when there are several datasets)
for path, exp in inputs:
# If the dirname of the previous image and the dirname of the current image do not match, this means that the
# dataset that is being parsed has changed. A new group needs to be created but will fail to be detected in the
# next "if" statement if the new dataset's exposure levels are different. Setting "newGroup" to True prevents this
# from happening.
if prevPath is not None and prevPath != os.path.dirname(path):
newGroup = True
currentExposure = LdrToHdrCalibration.getExposure(exp)
# Create a new group if the current image's exposure level is smaller than the previous image's, or
# if a new dataset has been detected (with a change in the path of the images).
if prevExposure and currentExposure < prevExposure or newGroup:
exposureGroups.append(exposures)
exposures = [exp]
else:
exposures.append(exp)
prevPath = os.path.dirname(path)
prevExposure = currentExposure
newGroup = False
exposureGroups.append(exposures)
exposures = None
bracketSizes = Counter()
if len(exposureGroups) == 1:
if len(set(exposureGroups[0])) == 1:
# Single exposure and multiple views
node.nbBrackets.value = 1
else:
# Single view and multiple exposures
node.nbBrackets.value = len(exposureGroups[0])
else:
for expGroup in exposureGroups:
bracketSizes[len(expGroup)] += 1
if len(bracketSizes) == 0:
node.nbBrackets.value = 0
else:
bestTuple = None
for tuple in bracketSizes.most_common():
if bestTuple is None or tuple[1] > bestTuple[1]:
bestTuple = tuple
elif tuple[1] == bestTuple[1]:
bestTuple = tuple if tuple[0] > bestTuple[0] else bestTuple
bestBracketSize = bestTuple[0]
node.nbBrackets.value = bestBracketSize
@staticmethod
def getExposure(exp, refIso = 100.0, refFnumber = 1.0):
fnumber, shutterSpeed, iso = exp
validShutterSpeed = shutterSpeed > 0.0 and math.isfinite(shutterSpeed)
validFnumber = fnumber > 0.0 and math.isfinite(fnumber)
if not validShutterSpeed and not validFnumber:
return -1.0
validRefFnumber = refFnumber > 0.0 and math.isfinite(refFnumber)
if not validShutterSpeed:
shutterSpeed = 1.0 / 200.0
if not validFnumber:
if validRefFnumber:
fnumber = refFnumber
else:
fnumber = 2.0
lRefFnumber = refFnumber
if not validRefFnumber:
lRefFnumber = fnumber
isoToAperture = 1.0
if iso > 1e-6 and refIso > 1e-6:
isoToAperture = math.sqrt(iso / refIso)
newFnumber = fnumber * isoToAperture
expIncrease = (lRefFnumber / newFnumber) * (lRefFnumber / newFnumber)
return shutterSpeed * expIncrease