#!/usr/bin/env python # coding:utf-8 import logging import os import time import json from enum import Enum from threading import Thread, Event, Lock from multiprocessing.pool import ThreadPool from PySide2.QtCore import Slot, QJsonValue, QObject, QUrl, Property, Signal, QPoint from meshroom import multiview from meshroom.common.qt import QObjectListModel from meshroom.core.attribute import Attribute, ListAttribute from meshroom.core.graph import Graph, Edge from meshroom.core.taskManager import TaskManager from meshroom.core.node import NodeChunk, Node, Status, ExecMode, CompatibilityNode, Position from meshroom.core import submitters from meshroom.ui import commands from meshroom.ui.utils import makeProperty class FilesModTimePollerThread(QObject): """ Thread responsible for non-blocking polling of last modification times of a list of files. Uses a Python ThreadPool internally to split tasks on multiple threads. """ timesAvailable = Signal(list) def __init__(self, parent=None): super(FilesModTimePollerThread, self).__init__(parent) self._thread = None self._mutex = Lock() self._threadPool = ThreadPool(4) self._stopFlag = Event() self._refreshInterval = 5 # refresh interval in seconds self._files = [] def start(self, files=None): """ Start polling thread. Args: files: the list of files to monitor """ if self._thread: # thread already running, return return self._stopFlag.clear() self._files = files or [] self._thread = Thread(target=self.run) self._thread.start() def setFiles(self, files): """ Set the list of files to monitor Args: files: the list of files to monitor """ with self._mutex: self._files = files def stop(self): """ Request polling thread to stop. """ if not self._thread: return self._stopFlag.set() self._thread.join() self._thread = None @staticmethod def getFileLastModTime(f): """ Return 'mtime' of the file if it exists, -1 otherwise. """ try: return os.path.getmtime(f) except OSError: return -1 def run(self): """ Poll watched files for last modification time. """ while not self._stopFlag.wait(self._refreshInterval): with self._mutex: files = list(self._files) times = self._threadPool.map(FilesModTimePollerThread.getFileLastModTime, files) with self._mutex: if files == self._files: self.timesAvailable.emit(times) class ChunksMonitor(QObject): """ ChunksMonitor regularly check NodeChunks' status files for modification and trigger their update on change. When working locally, status changes are reflected through the emission of 'statusChanged' signals. But when a graph is being computed externally - either via a Submitter or on another machine, NodeChunks status files are modified by another instance, potentially outside this machine file system scope. Same goes when status files are deleted/modified manually. Thus, for genericity, monitoring is based on regular polling and not file system watching. """ def __init__(self, chunks=(), parent=None): super(ChunksMonitor, self).__init__(parent) self.chunks = [] self._filesTimePoller = FilesModTimePollerThread(parent=self) self._filesTimePoller.timesAvailable.connect(self.compareFilesTimes) self._filesTimePoller.start() self.setChunks(chunks) def setChunks(self, chunks): """ Set the list of chunks to monitor. """ self.chunks = chunks self._filesTimePoller.setFiles(self.statusFiles) def stop(self): """ Stop the status files monitoring. """ self._filesTimePoller.stop() @property def statusFiles(self): """ Get status file paths from current chunks. """ return [c.statusFile for c in self.chunks] def compareFilesTimes(self, times): """ Compare previous file modification times with results from last poll. Trigger chunk status update if file was modified since. Args: times: the last modification times for currently monitored files. """ newRecords = dict(zip(self.chunks, times)) for chunk, fileModTime in newRecords.items(): # update chunk status if last modification time has changed since previous record if fileModTime != chunk.statusFileLastModTime: chunk.updateStatusFromCache() class GraphLayout(QObject): """ GraphLayout provides auto-layout features to a UIGraph. """ class DepthMode(Enum): """ Defines available node depth mode to layout the graph automatically. """ MinDepth = 0 # use node minimal depth MaxDepth = 1 # use node maximal depth # map between DepthMode and corresponding node depth attribute name _depthAttribute = { DepthMode.MinDepth: 'minDepth', DepthMode.MaxDepth: 'depth' } def __init__(self, graph): super(GraphLayout, self).__init__(graph) self.graph = graph self._depthMode = GraphLayout.DepthMode.MaxDepth self._nodeWidth = 160 # implicit node width self._nodeHeight = 120 # implicit node height self._gridSpacing = 40 # column/line spacing between nodes @Slot(Node, Node, int, int) def autoLayout(self, fromNode=None, toNode=None, startX=0, startY=0): """ Perform auto-layout from 'fromNode' to 'toNode', starting from (startX, startY) position. Args: fromNode (BaseNode): where to start the auto layout from toNode (BaseNode): up to where to perform the layout startX (int): start position x coordinate startY (int): start position y coordinate """ fromIndex = self.graph.nodes.indexOf(fromNode) if fromNode else 0 toIndex = self.graph.nodes.indexOf(toNode) if toNode else self.graph.nodes.count - 1 def getDepth(n): return getattr(n, self._depthAttribute[self._depthMode]) maxDepth = max([getDepth(n) for n in self.graph.nodes.values()]) grid = [[] for _ in range(maxDepth + 1)] # retrieve reference depth from start node zeroDepth = getDepth(self.graph.nodes.at(fromIndex)) if fromIndex > 0 else 0 for i in range(fromIndex, toIndex + 1): n = self.graph.nodes.at(i) grid[getDepth(n) - zeroDepth].append(n) with self.graph.groupedGraphModification("Graph Auto-Layout"): for x, line in enumerate(grid): for y, node in enumerate(line): px = startX + x * (self._nodeWidth + self._gridSpacing) py = startY + y * (self._nodeHeight + self._gridSpacing) self.graph.moveNode(node, Position(px, py)) @Slot() def reset(self): """ Perform auto-layout on the whole graph. """ self.autoLayout() def positionBoundingBox(self, nodes=None): """ Return bounding box for a set of nodes as (x, y, width, height). Args: nodes (list of Node): the list of nodes or the whole graph if None Returns: list of int: the resulting bounding box (x, y, width, height) """ if nodes is None: nodes = self.graph.nodes.values() first = nodes[0] bbox = [first.x, first.y, first.x, first.y] for n in nodes: bbox[0] = min(bbox[0], n.x) bbox[1] = min(bbox[1], n.y) bbox[2] = max(bbox[2], n.x) bbox[3] = max(bbox[3], n.y) bbox[2] -= bbox[0] bbox[3] -= bbox[1] return bbox def boundingBox(self, nodes=None): """ Return bounding box for a set of nodes as (x, y, width, height). Args: nodes (list of Node): the list of nodes or the whole graph if None Returns: list of int: the resulting bounding box (x, y, width, height) """ bbox = self.positionBoundingBox(nodes) bbox[2] += self._nodeWidth bbox[3] += self._nodeHeight return bbox def setDepthMode(self, mode): """ Set node depth mode to use. """ if isinstance(mode, int): mode = GraphLayout.DepthMode(mode) if self._depthMode.value == mode.value: return self._depthMode = mode depthModeChanged = Signal() depthMode = Property(int, lambda self: self._depthMode.value, setDepthMode, notify=depthModeChanged) nodeHeightChanged = Signal() nodeHeight = makeProperty(int, "_nodeHeight", notify=nodeHeightChanged) nodeWidthChanged = Signal() nodeWidth = makeProperty(int, "_nodeWidth", notify=nodeWidthChanged) gridSpacingChanged = Signal() gridSpacing = makeProperty(int, "_gridSpacing", notify=gridSpacingChanged) class UIGraph(QObject): """ High level wrapper over core.Graph, with additional features dedicated to UI integration. UIGraph exposes undoable methods on its graph and computation in a separate thread. It also provides a monitoring of all its computation units (NodeChunks). """ def __init__(self, undoStack, taskManager, parent=None): super(UIGraph, self).__init__(parent) self._undoStack = undoStack self._taskManager = taskManager self._graph = Graph('', self) self._modificationCount = 0 self._chunksMonitor = ChunksMonitor(parent=self) self._computeThread = Thread() self._computingLocally = self._submitted = False self._sortedDFSChunks = QObjectListModel(parent=self) self._layout = GraphLayout(self) self._selectedNode = None self._selectedNodes = QObjectListModel(parent=self) self._hoveredNode = None self.computeStatusChanged.connect(self.updateLockedUndoStack) def setGraph(self, g): """ Set the internal graph. """ if self._graph: self.stopExecution() self.clear() oldGraph = self._graph self._graph = g if oldGraph: oldGraph.deleteLater() self._graph.updated.connect(self.onGraphUpdated) self._graph.update() self._taskManager.update(self._graph) # perform auto-layout if graph does not provide nodes positions if Graph.IO.Features.NodesPositions not in self._graph.fileFeatures: self._layout.reset() # clear undo-stack after layout self._undoStack.clear() else: bbox = self._layout.positionBoundingBox() if bbox[2] == 0 and bbox[3] == 0: self._layout.reset() # clear undo-stack after layout self._undoStack.clear() self.graphChanged.emit() def onGraphUpdated(self): """ Callback to any kind of attribute modification. """ # TODO: handle this with a better granularity self.updateChunks() def updateChunks(self): dfsNodes = self._graph.dfsOnFinish(None)[0] chunks = self._graph.getChunks(dfsNodes) # Nothing has changed, return if self._sortedDFSChunks.objectList() == chunks: return for chunk in self._sortedDFSChunks: chunk.statusChanged.disconnect(self.updateGraphComputingStatus) self._sortedDFSChunks.setObjectList(chunks) for chunk in self._sortedDFSChunks: chunk.statusChanged.connect(self.updateGraphComputingStatus) # provide ChunkMonitor with the update list of chunks self.updateChunkMonitor(self._sortedDFSChunks) # update graph computing status based on the new list of NodeChunks self.updateGraphComputingStatus() def updateChunkMonitor(self, chunks): """ Update the list of chunks for status files monitoring. """ self._chunksMonitor.setChunks(chunks) def clear(self): if self._graph: self.clearNodeHover() self.clearNodeSelection() self._taskManager.clear() self._graph.clear() self._sortedDFSChunks.clear() self._undoStack.clear() def stopChildThreads(self): """ Stop all child threads. """ self.stopExecution() self._chunksMonitor.stop() @Slot(str, result=bool) def loadGraph(self, filepath, setupProjectFile=True): g = Graph('') status = g.load(filepath, setupProjectFile) if not os.path.exists(g.cacheDir): os.mkdir(g.cacheDir) self.setGraph(g) return status @Slot(QUrl, result=bool) @Slot(QUrl, QPoint, result=bool) def importProject(self, filepath, position=None): if isinstance(filepath, (QUrl)): # depending how the QUrl has been initialized, # toLocalFile() may return the local path or an empty string localFile = filepath.toLocalFile() if not localFile: localFile = filepath.toString() else: localFile = filepath if isinstance(position, QPoint): position = Position(position.x(), position.y()) yOffset = self.layout.gridSpacing + self.layout.nodeHeight return self.push(commands.ImportProjectCommand(self._graph, localFile, position=position, yOffset=yOffset)) @Slot(QUrl) def saveAs(self, url): self._saveAs(url) @Slot(QUrl) def saveAsTemplate(self, url): self._saveAs(url, setupProjectFile=False, template=True) def _saveAs(self, url, setupProjectFile=True, template=False): """ Helper function for 'save as' features. """ if isinstance(url, (str)): localFile = url else: localFile = url.toLocalFile() # ensure file is saved with ".mg" extension if os.path.splitext(localFile)[-1] != ".mg": localFile += ".mg" self._graph.save(localFile, setupProjectFile=setupProjectFile, template=template) self._undoStack.setClean() # saving file on disk impacts cache folder location # => force re-evaluation of monitored status files paths self.updateChunkMonitor(self._sortedDFSChunks) @Slot() def save(self): self._graph.save() self._undoStack.setClean() @Slot() def updateLockedUndoStack(self): if self.isComputingLocally(): self._undoStack.lockAtThisIndex() else: self._undoStack.unlock() @Slot(Node) def execute(self, node=None): nodes = [node] if node else None self._taskManager.compute(self._graph, nodes) self.updateLockedUndoStack() # explicitly call the update while it is already computing @Slot() def stopExecution(self): if not self.isComputingLocally(): return self._taskManager.requestBlockRestart() self._graph.stopExecution() self._taskManager._thread.join() @Slot(Node) def stopNodeComputation(self, node): """ Stop the computation of the node and update all the nodes depending on it. """ if not self.isComputingLocally(): return # Stop the node and wait Task Manager node.stopComputation() self._taskManager._thread.join() @Slot(Node) def cancelNodeComputation(self, node): """ Cancel the computation of the node and all the nodes depending on it. """ if node.getGlobalStatus() == Status.SUBMITTED: # Status from SUBMITTED to NONE # Make sure to remove the nodes from the Task Manager list node.clearSubmittedChunks() self._taskManager.removeNode(node, displayList=True, processList=True) for n in node.getOutputNodes(recursive=True, dependenciesOnly=True): n.clearSubmittedChunks() self._taskManager.removeNode(n, displayList=True, processList=True) @Slot(Node) def submit(self, node=None): """ Submit the graph to the default Submitter. If a node is specified, submit this node and its uncomputed predecessors. Otherwise, submit the whole Notes: Default submitter is specified using the MESHROOM_DEFAULT_SUBMITTER environment variable. """ self.save() # graph must be saved before being submitted self._undoStack.clear() # the undo stack must be cleared node = [node] if node else None self._taskManager.submit(self._graph, os.environ.get('MESHROOM_DEFAULT_SUBMITTER', ''), node) def updateGraphComputingStatus(self): # update graph computing status computingLocally = any([ch.status.execMode == ExecMode.LOCAL and ch.status.status in (Status.RUNNING, Status.SUBMITTED) for ch in self._sortedDFSChunks]) submitted = any([ch.status.status == Status.SUBMITTED for ch in self._sortedDFSChunks]) if self._computingLocally != computingLocally or self._submitted != submitted: self._computingLocally = computingLocally self._submitted = submitted self.computeStatusChanged.emit() def isComputing(self): """ Whether is graph is being computed, either locally or externally. """ return self.isComputingLocally() or self.isComputingExternally() def isComputingExternally(self): """ Whether this graph is being computed externally. """ return self._submitted def isComputingLocally(self): """ Whether this graph is being computed locally (i.e computation can be stopped). """ ## One solution could be to check if the thread is still running, # but the latency in creating/stopping the thread can be off regarding the update signals. # isRunningThread = self._taskManager._thread.isRunning() ## Another solution is to retrieve the current status directly from all chunks status # isRunning = self._taskManager.hasRunningChunks() ## For performance reason, we use a precomputed value updated in updateGraphComputingStatus: return self._computingLocally def push(self, command): """ Try and push the given command to the undo stack. Args: command (commands.UndoCommand): the command to push """ return self._undoStack.tryAndPush(command) def groupedGraphModification(self, title, disableUpdates=True): """ Get a GroupedGraphModification for this Graph. Args: title (str): the title of the macro command disableUpdates (bool): whether to disable graph updates Returns: GroupedGraphModification: the instantiated context manager """ return commands.GroupedGraphModification(self._graph, self._undoStack, title, disableUpdates) @Slot(str) def beginModification(self, name): """ Begin a Graph modification. Calls to beginModification and endModification may be nested, but every call to beginModification must have a matching call to endModification. """ self._modificationCount += 1 self._undoStack.beginMacro(name) @Slot() def endModification(self): """ Ends a Graph modification. Must match a call to beginModification. """ assert self._modificationCount > 0 self._modificationCount -= 1 self._undoStack.endMacro() @Slot(str, QPoint, result=QObject) def addNewNode(self, nodeType, position=None, **kwargs): """ [Undoable] Create a new Node of type 'nodeType' and returns it. Args: nodeType (str): the type of the Node to create. position (QPoint): (optional) the initial position of the node **kwargs: optional node attributes values Returns: Node: the created node """ if isinstance(position, QPoint): position = Position(position.x(), position.y()) return self.push(commands.AddNodeCommand(self._graph, nodeType, position=position, **kwargs)) def filterNodes(self, nodes): """Filter out the nodes that do not exist on the graph.""" return [ n for n in nodes if n in self._graph.nodes.values() ] @Slot(Node, QPoint, QObject) def moveNode(self, node, position, nodes=None): """ Move 'node' to the given 'position' and also update the positions of 'nodes' if necessary. Args: node (Node): the node to move position (QPoint): the target position nodes (list[Node]): the nodes to update the position of """ if not nodes: nodes = [node] nodes = self.filterNodes(nodes) if isinstance(position, QPoint): position = Position(position.x(), position.y()) deltaX = position.x - node.x deltaY = position.y - node.y with self.groupedGraphModification("Move Selected Nodes"): for n in nodes: position = Position(n.x + deltaX, n.y + deltaY) self.push(commands.MoveNodeCommand(self._graph, n, position)) @Slot(QObject) def removeNodes(self, nodes): """ Remove 'nodes' from the graph. Args: nodes (list[Node]): the nodes to remove """ nodes = self.filterNodes(nodes) if any([ n.locked for n in nodes ]): return with self.groupedGraphModification("Remove Selected Nodes"): for node in nodes: self.push(commands.RemoveNodeCommand(self._graph, node)) @Slot(QObject) def removeNodesFrom(self, nodes): """ Remove all nodes starting from 'startNode' to graph leaves. Args: startNode (Node): the node to start from. """ with self.groupedGraphModification("Remove Nodes From Selected Nodes"): nodesToRemove, _ = self._graph.dfsOnDiscover(startNodes=nodes, reverse=True, dependenciesOnly=True) # filter out nodes that will be removed more than once uniqueNodesToRemove = list(dict.fromkeys(nodesToRemove)) # Perform nodes removal from leaves to start node so that edges # can be re-created in correct order on redo. self.removeNodes(list(reversed(uniqueNodesToRemove))) @Slot(QObject, result="QVariantList") def duplicateNodes(self, nodes): """ Duplicate 'nodes'. Args: nodes (list[Node]): the nodes to duplicate Returns: list[Node]: the list of duplicated nodes """ nodes = self.filterNodes(nodes) nPositions = [] # enable updates between duplication and layout to get correct depths during layout with self.groupedGraphModification("Duplicate Selected Nodes", disableUpdates=False): # disable graph updates during duplication with self.groupedGraphModification("Node duplication", disableUpdates=True): duplicates = self.push(commands.DuplicateNodesCommand(self._graph, nodes)) # move nodes below the bounding box formed by the duplicated node(s) bbox = self._layout.boundingBox(duplicates) for n in duplicates: idx = duplicates.index(n) yPos = n.y + self.layout.gridSpacing + bbox[3] if idx > 0 and (n.x, yPos) in nPositions: # make sure the node will not be moved on top of another node while (n.x, yPos) in nPositions: yPos = yPos + self.layout.gridSpacing + self.layout.nodeHeight self.moveNode(n, Position(n.x, yPos)) else: self.moveNode(n, Position(n.x, bbox[3] + self.layout.gridSpacing + n.y)) nPositions.append((n.x, n.y)) return duplicates @Slot(QObject, result="QVariantList") def duplicateNodesFrom(self, nodes): """ Duplicate all nodes starting from 'nodes' to graph leaves. Args: nodes (list[Node]): the nodes to start from. Returns: list[Node]: the list of duplicated nodes """ with self.groupedGraphModification("Duplicate Nodes From Selected Nodes"): nodesToDuplicate, _ = self._graph.dfsOnDiscover(startNodes=nodes, reverse=True, dependenciesOnly=True) # filter out nodes that will be duplicated more than once uniqueNodesToDuplicate = list(dict.fromkeys(nodesToDuplicate)) duplicates = self.duplicateNodes(uniqueNodesToDuplicate) return duplicates @Slot(QObject) def clearData(self, nodes): """ Clear data from 'nodes'. """ nodes = self.filterNodes(nodes) for n in nodes: n.clearData() @Slot(QObject) def clearDataFrom(self, nodes): """ Clear data from all nodes starting from 'nodes' to graph leaves. Args: nodes (list[Node]): the nodes to start from. """ self.clearData(self._graph.dfsOnDiscover(startNodes=nodes, reverse=True, dependenciesOnly=True)[0]) @Slot(Attribute, Attribute) def addEdge(self, src, dst): if isinstance(dst, ListAttribute) and not isinstance(src, ListAttribute): with self.groupedGraphModification("Insert and Add Edge on {}".format(dst.getFullNameToNode())): self.appendAttribute(dst) self._addEdge(src, dst.at(-1)) else: self._addEdge(src, dst) def _addEdge(self, src, dst): with self.groupedGraphModification("Connect '{}'->'{}'".format(src.getFullNameToNode(), dst.getFullNameToNode())): if dst in self._graph.edges.keys(): self.removeEdge(self._graph.edge(dst)) self.push(commands.AddEdgeCommand(self._graph, src, dst)) @Slot(Edge) def removeEdge(self, edge): if isinstance(edge.dst.root, ListAttribute): with self.groupedGraphModification("Remove Edge and Delete {}".format(edge.dst.getFullNameToNode())): self.push(commands.RemoveEdgeCommand(self._graph, edge)) self.removeAttribute(edge.dst) else: self.push(commands.RemoveEdgeCommand(self._graph, edge)) @Slot(Attribute, "QVariant") def setAttribute(self, attribute, value): self.push(commands.SetAttributeCommand(self._graph, attribute, value)) @Slot(Attribute) def resetAttribute(self, attribute): """ Reset 'attribute' to its default value """ self.push(commands.SetAttributeCommand(self._graph, attribute, attribute.defaultValue())) @Slot(CompatibilityNode, result=Node) def upgradeNode(self, node): """ Upgrade a CompatibilityNode. """ return self.push(commands.UpgradeNodeCommand(self._graph, node)) @Slot() def upgradeAllNodes(self): """ Upgrade all upgradable CompatibilityNode instances in the graph. """ with self.groupedGraphModification("Upgrade all Nodes"): nodes = [n for n in self._graph._compatibilityNodes.values() if n.canUpgrade] for node in nodes: self.upgradeNode(node) @Slot() def forceNodesStatusUpdate(self): """ Force re-evaluation of graph's nodes status. """ self._graph.updateStatusFromCache(force=True) @Slot(Attribute, QJsonValue) def appendAttribute(self, attribute, value=QJsonValue()): if isinstance(value, QJsonValue): if value.isArray(): pyValue = value.toArray().toVariantList() else: pyValue = None if value.isNull() else value.toObject() else: pyValue = value self.push(commands.ListAttributeAppendCommand(self._graph, attribute, pyValue)) @Slot(Attribute) def removeAttribute(self, attribute): self.push(commands.ListAttributeRemoveCommand(self._graph, attribute)) @Slot(Node) def appendSelection(self, node): """ Append 'node' to the selection if it is not already part of the selection. """ if not self._selectedNodes.contains(node): self._selectedNodes.append(node) @Slot("QVariantList") def selectNodes(self, nodes): """ Append 'nodes' to the selection. """ for node in nodes: self.appendSelection(node) self.selectedNodesChanged.emit() @Slot(Node) def selectFollowing(self, node): """ Select all the nodes the depend on 'node'. """ self.selectNodes(self._graph.dfsOnDiscover(startNodes=[node], reverse=True, dependenciesOnly=True)[0]) @Slot(QObject, QObject) def boxSelect(self, selection, draggable): """ Select nodes that overlap with 'selection'. Takes into account the zoom and position of 'draggable'. Args: selection: the rectangle selection widget. draggable: the parent widget that has position and scale data. """ x = selection.x() - draggable.x() y = selection.y() - draggable.y() otherX = x + selection.width() otherY = y + selection.height() x, y, otherX, otherY = [ i / draggable.scale() for i in [x, y, otherX, otherY] ] if x == otherX or y == otherY: return for n in self._graph.nodes: bbox = self._layout.boundingBox([n]) # evaluate if the selection and node intersect if not (x > bbox[2] + bbox[0] or otherX < bbox[0] or y > bbox[3] + bbox[1] or otherY < bbox[1]): self.appendSelection(n) self.selectedNodesChanged.emit() @Slot() def clearNodeSelection(self): """ Clear all node selection. """ self._selectedNode = None self._selectedNodes.clear() self.selectedNodeChanged.emit() self.selectedNodesChanged.emit() def clearNodeHover(self): """ Reset currently hovered node to None. """ self.hoveredNode = None @Slot(result=str) def getSelectedNodesContent(self): """ Return the content of the currently selected nodes in a string, formatted to JSON. If no node is currently selected, an empty string is returned. """ if self._selectedNodes: d = self._graph.toDict() selection = {} for node in self._selectedNodes: selection[node.name] = d[node.name] return json.dumps(selection, indent=4) return '' @Slot(str, QPoint, bool, result="QVariantList") def pasteNodes(self, clipboardContent, position=None, centerPosition=False): """ Parse the content of the clipboard to see whether it contains valid node descriptions. If that is the case, the nodes described in the clipboard are built with the available information. Otherwise, nothing is done. This function does not need to be preceded by a call to "getSelectedNodesContent". Any clipboard content that contains at least a node type with a valid JSON formatting (dictionary form with double quotes around the keys and values) can be used to generate a node. For example, it is enough to have: {"nodeName_1": {"nodeType":"CameraInit"}, "nodeName_2": {"nodeType":"FeatureMatching"}} in the clipboard to create a default CameraInit and a default FeatureMatching nodes. Args: clipboardContent (str): the string contained in the clipboard, that may or may not contain valid node information position (QPoint): the position of the mouse in the Graph Editor when the function was called centerPosition (bool): whether the provided position is not the top-left corner of the pasting zone, but its center Returns: list: the list of Node objects that were pasted and added to the graph """ if not clipboardContent: return try: d = json.loads(clipboardContent) except ValueError as e: raise ValueError(e) if not isinstance(d, dict): raise ValueError("The clipboard does not contain a valid node. Cannot paste it.") # If the clipboard contains a header, then a whole file is contained in the clipboard # Extract the "graph" part and paste it all, ignore the rest if d.get("header", None): d = d.get("graph", None) if not d: return if isinstance(position, QPoint): position = Position(position.x(), position.y()) if self.hoveredNode: # If a node is hovered, add an offset to prevent complete occlusion position = Position(position.x + self.layout.gridSpacing, position.y + self.layout.gridSpacing) # Get the position of the first node in a zone whose top-left corner is the mouse and the bottom-right # corner the (x, y) coordinates, with x the maximum of all the nodes' position along the x-axis, and y the # maximum of all the nodes' position along the y-axis. All nodes with a position will be placed relatively # to the first node within that zone. firstNodePos = None minX = 0 maxX = 0 minY = 0 maxY = 0 for key in sorted(d): nodeType = d[key].get("nodeType", None) if not nodeType: raise ValueError("Invalid node description: no provided node type for '{}'".format(key)) pos = d[key].get("position", None) if pos: if not firstNodePos: firstNodePos = pos minX = pos[0] maxX = pos[0] minY = pos[1] maxY = pos[1] else: if minX > pos[0]: minX = pos[0] if maxX < pos[0]: maxX = pos[0] if minY > pos[1]: minY = pos[1] if maxY < pos[1]: maxY = pos[1] # Ensure there will not be an error if no node has a specified position if not firstNodePos: firstNodePos = [0, 0] # Position of the first node within the zone position = Position(position.x + firstNodePos[0] - minX, position.y + firstNodePos[1] - minY) if centerPosition: # Center the zone around the mouse's position (mouse's position might be artificial) maxX = maxX + self.layout.nodeWidth # maxX and maxY are the position of the furthest node's top-left corner maxY = maxY + self.layout.nodeHeight # We want the position of the furthest node's bottom-right corner position = Position(position.x - ((maxX - minX) / 2), position.y - ((maxY - minY) / 2)) finalPosition = None prevPosition = None positions = [] for key in sorted(d): currentPosition = d[key].get("position", None) if not finalPosition: finalPosition = position else: if prevPosition and currentPosition: # If the nodes both have a position, recreate the distance between them with a different # starting point x = finalPosition.x + (currentPosition[0] - prevPosition[0]) y = finalPosition.y + (currentPosition[1] - prevPosition[1]) finalPosition = Position(x, y) else: # If either the current node or previous one lacks a position, use a custom one finalPosition = Position(finalPosition.x + self.layout.gridSpacing + self.layout.nodeWidth, finalPosition.y) prevPosition = currentPosition positions.append(finalPosition) return self.push(commands.PasteNodesCommand(self.graph, d, position=positions)) undoStack = Property(QObject, lambda self: self._undoStack, constant=True) graphChanged = Signal() graph = Property(Graph, lambda self: self._graph, notify=graphChanged) taskManager = Property(TaskManager, lambda self: self._taskManager, constant=True) nodes = Property(QObject, lambda self: self._graph.nodes, notify=graphChanged) layout = Property(GraphLayout, lambda self: self._layout, constant=True) computeStatusChanged = Signal() computing = Property(bool, isComputing, notify=computeStatusChanged) computingExternally = Property(bool, isComputingExternally, notify=computeStatusChanged) computingLocally = Property(bool, isComputingLocally, notify=computeStatusChanged) canSubmit = Property(bool, lambda self: len(submitters), constant=True) sortedDFSChunks = Property(QObject, lambda self: self._sortedDFSChunks, constant=True) lockedChanged = Signal() selectedNodeChanged = Signal() # Current main selected node selectedNode = makeProperty(QObject, "_selectedNode", selectedNodeChanged, resetOnDestroy=True) selectedNodesChanged = Signal() # Currently selected nodes selectedNodes = makeProperty(QObject, "_selectedNodes", selectedNodesChanged, resetOnDestroy=True) hoveredNodeChanged = Signal() # Currently hovered node hoveredNode = makeProperty(QObject, "_hoveredNode", hoveredNodeChanged, resetOnDestroy=True)