mirror of
https://github.com/alicevision/Meshroom.git
synced 2025-06-02 02:42:05 +02:00
[nodes] RenderAnimatedCamera: clean up
This commit is contained in:
parent
f8141796f3
commit
fdf45fa6f4
2 changed files with 193 additions and 213 deletions
|
@ -7,6 +7,7 @@ import sys # to get command line args
|
|||
import argparse # to parse options for us and print a nice help message
|
||||
from distutils.util import strtobool
|
||||
|
||||
|
||||
def main():
|
||||
argv = sys.argv
|
||||
|
||||
|
@ -23,104 +24,82 @@ def main():
|
|||
|
||||
parser = argparse.ArgumentParser(description=usage_text)
|
||||
|
||||
|
||||
parser.add_argument(
|
||||
"--sfMCameraPath", dest="SFM_cam_path", metavar='FILE', required=True,
|
||||
help="This text will be used to render an image",
|
||||
"--sfmCameraPath", metavar='FILE', required=True,
|
||||
help="sfmData with the animated camera.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--useBackground", dest="Use_Background", type=strtobool, required=True,
|
||||
"--useBackground", type=strtobool, required=True,
|
||||
help="Diplay the background image or not.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--undistortedImages", dest="undisto_images", metavar='FILE', required=False,
|
||||
"--undistortedImages", metavar='FILE', required=False,
|
||||
help="Save the generated file to the specified path",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sfMData", dest="SFM_Data", metavar='FILE', required=True,
|
||||
help="These info carry the Point Cloud or mesh we need.",
|
||||
"--model", metavar='FILE', required=True,
|
||||
help="Point Cloud or Mesh used in the rendering.",
|
||||
)
|
||||
|
||||
#Point Cloud Arguments (When SFM Data is .abc)
|
||||
# Point Cloud Arguments (when SFM Data is .abc)
|
||||
|
||||
parser.add_argument(
|
||||
"--pointCloudDensity", dest="Point_Cloud_Density", type=float, required=False,
|
||||
"--pointCloudDensity", type=float, required=False,
|
||||
help="Number of point from the cloud rendered",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--particleSize", dest="Particle_Size", type=float, required=False,
|
||||
help="Scale of every particle used to show the point cloud",
|
||||
"--particleSize", type=float, required=False,
|
||||
help="Scale of particles used to show the point cloud",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--particleColor", dest="Particle_Color", type=str, required=False,
|
||||
help="Color of every particle used to show the point cloud (SFM Data is .abc)",
|
||||
"--particleColor", type=str, required=False,
|
||||
help="Color of particles used to show the point cloud (SFM Data is .abc)",
|
||||
)
|
||||
|
||||
#Mesh Arguments (When SFM Data is .obj)
|
||||
# Mesh Arguments (when SFM Data is .obj)
|
||||
|
||||
parser.add_argument(
|
||||
"--edgeColor", dest="Edge_Color", type=str, required=False,
|
||||
"--edgeColor", type=str, required=False,
|
||||
help="Color of the edges of the rendered object (SFM Data is .obj)",
|
||||
)
|
||||
|
||||
|
||||
#Output Arguments
|
||||
# Output Arguments
|
||||
|
||||
parser.add_argument(
|
||||
"--outputFormat", dest="Output_Format", type=str, required=True,
|
||||
"--videoFormat", type=str, required=True,
|
||||
help="Format of the video output",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--outputPath", dest="output_path", metavar='FILE', required=True,
|
||||
"--outputPath", metavar='FILE', required=True,
|
||||
help="Render an image to the specified path",
|
||||
)
|
||||
|
||||
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
if not argv:
|
||||
parser.print_help()
|
||||
return
|
||||
return -1
|
||||
|
||||
if not args.undisto_images and args.Use_Background :
|
||||
print("Error: --undisto_images argument not given, aborting.")
|
||||
if not args.undistortedImages and args.useBackground:
|
||||
print("Error: --undistortedImages argument not given, aborting.")
|
||||
parser.print_help()
|
||||
return
|
||||
|
||||
if not args.Point_Cloud_Density and args.SFM_Data.endswith('.abc'):
|
||||
print("Error: --Point_Cloud_Density argument not given, aborting.")
|
||||
parser.print_help()
|
||||
return
|
||||
return -1
|
||||
|
||||
if not args.Particle_Size and args.SFM_Data.endswith('.abc'):
|
||||
print("Error: --Particle_Size argument not given, aborting.")
|
||||
parser.print_help()
|
||||
return
|
||||
|
||||
if not args.Particle_Color and args.SFM_Data.endswith('.abc'):
|
||||
print("Error: --Particle_Color argument not given, aborting.")
|
||||
parser.print_help()
|
||||
return
|
||||
|
||||
if not args.Edge_Color and args.SFM_Data.endswith('.obj'):
|
||||
print("Error: --Edge_Color argument not given, aborting.")
|
||||
parser.print_help()
|
||||
return
|
||||
|
||||
#Clear Current Scene
|
||||
# Clear Current Scene
|
||||
try:
|
||||
for objects in bpy.data.objects:
|
||||
bpy.data.objects.remove(objects)
|
||||
except RuntimeError:
|
||||
print("Error: While clearing current scene")
|
||||
print("Error while clearing current scene")
|
||||
raise
|
||||
|
||||
#The Switcher is the setting for most of the colors (if you want to add some, do it here and in the arguments of the node)
|
||||
# The Switcher is the setting for most of the colors (if you want to add some, do it here and in the arguments of the node)
|
||||
# Keep in mind that we use the same switcher for both the Edge Color and the Particle Color settings.
|
||||
# So if you add a color to one of them in the node, might has well add it to the other.
|
||||
|
||||
|
@ -132,10 +111,10 @@ def main():
|
|||
'Magenta':(1.0, 0, 0.75, 1)
|
||||
}
|
||||
|
||||
# import Undistorted Images
|
||||
print("Import Undistorted Images")
|
||||
|
||||
undis_imgs = []
|
||||
#Some of these variable will be very useful in the next steps keep them in mind
|
||||
# Some of these variable will be very useful in the next steps keep them in mind
|
||||
number_of_frame = 0
|
||||
offset = 0
|
||||
first_image_name = ""
|
||||
|
@ -143,21 +122,23 @@ def main():
|
|||
# In this part of the code we take the undistorted images and we process some info about them
|
||||
# undis_imgs is the list of the images' names
|
||||
# first_image_name says it all in the name
|
||||
# The offset is important, it corresponds to the last part of the name of the first frame
|
||||
# In most case it will hopefully be 0 but the sequence may start from a more advanced frame
|
||||
if args.Use_Background :
|
||||
files = os.listdir(args.undisto_images)
|
||||
# The offset is important, it corresponds to the last part of the name of the first frame.
|
||||
# In most case, it will be 0 but the sequence may start from a more advanced frame.
|
||||
if args.useBackground:
|
||||
files = os.listdir(args.undistortedImages)
|
||||
for f in files :
|
||||
if f.endswith(".exr") and not f.__contains__("UVMap"):
|
||||
undis_imgs.append({"name":f})
|
||||
number_of_frame = len(undis_imgs)
|
||||
print("undis_imgs: " + str(undis_imgs))
|
||||
first_image_name = undis_imgs[0]['name']
|
||||
offset = int(re.findall(r'\d+', first_image_name)[-1]) - 1
|
||||
|
||||
except RuntimeError:
|
||||
print("Error: while importing the undistorted images.")
|
||||
print("Error while importing the undistorted images.")
|
||||
raise
|
||||
|
||||
#import abc (Animated Camera)
|
||||
print("Import Animated Camera")
|
||||
|
||||
try:
|
||||
|
||||
|
@ -167,14 +148,12 @@ def main():
|
|||
|
||||
# Once the cam has been found we select the main camera of the scene.
|
||||
# The rest of the code is setting up the display of the background image,
|
||||
# Since it's not a simple image but an image Sequence, we have to use the offset and the number of frame
|
||||
# Information taken from the previous block of code.
|
||||
# The frame method is the one that align with the Point Cloud althought this may change,
|
||||
# so feel free to try out the two other settings if something changes on previous nodes.
|
||||
# We also have to make the scene render film transparent because we want to be able to display
|
||||
# our background afterward in the next block of code
|
||||
# As it is not a simple image but an image Sequence, we have to use the offset and the number of frames.
|
||||
|
||||
bpy.ops.wm.alembic_import(filepath=args.SFM_cam_path)
|
||||
# We also have to make the scene render film transparent because we want to be able to display
|
||||
# our background afterwards.
|
||||
|
||||
bpy.ops.wm.alembic_import(filepath=args.sfmCameraPath)
|
||||
animated_cams = bpy.context.selected_editable_objects[:]
|
||||
cam_location = mathutils.Vector((0, 0, 0))
|
||||
cam_obj = None
|
||||
|
@ -185,8 +164,8 @@ def main():
|
|||
bpy.context.scene.camera = obj
|
||||
cam_location = obj.location
|
||||
cam_obj = obj
|
||||
if args.Use_Background :
|
||||
bpy.ops.image.open(filepath=args.undisto_images + "/" + first_image_name, directory=args.undisto_images, files=undis_imgs, relative_path=True, show_multiview=False)
|
||||
if args.useBackground :
|
||||
bpy.ops.image.open(filepath=args.undistortedImages + "/" + first_image_name, directory=args.undistortedImages, files=undis_imgs, relative_path=True, show_multiview=False)
|
||||
bpy.data.cameras[obj.data.name].background_images.new()
|
||||
bpy.data.cameras[obj.data.name].show_background_images = True
|
||||
bpy.data.cameras[obj.data.name].background_images[0].image = bpy.data.images[first_image_name]
|
||||
|
@ -196,26 +175,20 @@ def main():
|
|||
bpy.data.cameras[obj.data.name].background_images[0].image_user.frame_start = 1
|
||||
bpy.context.scene.render.film_transparent = True
|
||||
except RuntimeError:
|
||||
print("Error: while importing the alembic file (Animated Camera).")
|
||||
print("Error while importing the alembic file (Animated Camera): " + args.sfmCameraPath)
|
||||
raise
|
||||
|
||||
print("Create the particle plane")
|
||||
|
||||
#Place the particle plane
|
||||
try:
|
||||
|
||||
# This is a key step if you are displaying a Point Cloud.
|
||||
# We are using a particle system later in the code to display the Point Cloud.
|
||||
# To make it so, we need a model for the particle, a object that will be repeated a lot to make a shape.
|
||||
# In order to do that we need a plane (one face only for optimisation purpose) that always face the camera.
|
||||
# So we made a plane and made it a child (in the parenting system) of the camera. That way whenever the cam
|
||||
# moves, the plane moves and turn accordingly.
|
||||
# We need to setup a model for the particle, a plane that always face the camera.
|
||||
# It is declared as a child of the camera in the parenting system, so when the camera moves, the plane moves accordingly.
|
||||
|
||||
# Bmesh creates the plane and put it into the mesh. We change the size of the plane according to
|
||||
# the scale given in arguments. We need to adjust the plane's location because putting it at the
|
||||
# exact location of the camera blocks the view. Then, the switcher gives a RGBA color according to
|
||||
# the given argument. We have to use a material that uses 'Emission'
|
||||
# otherwise the particle is going to react to lights and we don't really need that (the color wouldn't be clear).
|
||||
# We use an 'Emission' material so it does not react to lights.
|
||||
# To do that we have to use the shader 'node_tree' we clear all links between nodes, create the emission node
|
||||
# and connect it to the 'Material Output' node (which is what we will see in render).
|
||||
# Finally we use the switcher to color the model.
|
||||
# and connect it to the 'Material Output' node.
|
||||
|
||||
plane = bpy.data.meshes.new('Plane')
|
||||
objectsPlane = bpy.data.objects.new(name="Plane", object_data=plane)
|
||||
|
@ -223,8 +196,8 @@ def main():
|
|||
bmesh.ops.create_grid(bm, x_segments = 1, y_segments = 1, size = 1.0)
|
||||
bm.to_mesh(plane)
|
||||
bm.free()
|
||||
if (args.SFM_Data.endswith('.abc')):
|
||||
objectsPlane.scale = mathutils.Vector((args.Particle_Size, args.Particle_Size, args.Particle_Size))
|
||||
if args.model.lower().endswith('.abc'):
|
||||
objectsPlane.scale = mathutils.Vector((args.particleSize, args.particleSize, args.particleSize))
|
||||
cam_location.y += -2.0
|
||||
objectsPlane.location = cam_location
|
||||
bpy.context.scene.collection.objects.link(objectsPlane)
|
||||
|
@ -237,29 +210,29 @@ def main():
|
|||
objectsPlane.active_material.node_tree.links.clear()
|
||||
objectsPlane.active_material.node_tree.nodes.new(type='ShaderNodeEmission')
|
||||
objectsPlane.active_material.node_tree.links.new(objectsPlane.active_material.node_tree.nodes['Emission'].outputs['Emission'], objectsPlane.active_material.node_tree.nodes['Material Output'].inputs['Surface'])
|
||||
if (args.SFM_Data.endswith('.abc')):
|
||||
objectsPlane.active_material.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Particle_Color, 'Invalid Color')
|
||||
if args.model.lower().endswith('.abc'):
|
||||
objectsPlane.active_material.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.particleColor, 'Invalid Color')
|
||||
|
||||
except RuntimeError:
|
||||
print("Error: while setting up the particle model.")
|
||||
raise
|
||||
|
||||
if (args.SFM_Data.endswith('.abc')):
|
||||
# This part is all about importing the Point Cloud and setting up the Particle System.
|
||||
# After importing the alembic, we look for a specific mesh in the file. Again the hardcoded name would be a
|
||||
# problem if the previous nodes hadn't name it specificaly that (.001 because a mesh with the same name has
|
||||
# been imported with the animated camera).
|
||||
|
||||
# Once the Point Cloud has been found. We make it the active object (important for the node_tree later).
|
||||
# Then, we create a particle system on it. Render_type set to object and the said object is the plane,
|
||||
# thanks to that the particle format is set to repeat the plane. Emit_from 'vert' so the points of the
|
||||
# point cloud are the one rendering the particle.
|
||||
# The count is the number of particle repeated on the point cloud. We use the rate given as arguments
|
||||
# to give a number. Most of the following settings are just formalities but use_rotation and use_rotation_instance,
|
||||
# those two make sure to use the same rotaion than the model (which is needed to have the particle always facing the camera).
|
||||
if args.model.lower().endswith('.abc'):
|
||||
|
||||
#import abc (Point Cloud)
|
||||
print("Import ABC Point Cloud")
|
||||
|
||||
# After importing the alembic, we look for a specific Point Cloud in the file.
|
||||
# We make it the active object (important for the node_tree later).
|
||||
# Then, we create a particle system on it. Render_type set to object and the said object is the plane.
|
||||
# Emit_from 'vert' so the points of the point cloud are the one rendering the particle.
|
||||
# The count is the number of particles repeated on the point cloud. We use the rate given as arguments
|
||||
# to give a number.
|
||||
# use_rotation and use_rotation_instance ensure that we use the same rotation than the model (which is needed to have the particle always facing the camera).
|
||||
|
||||
# Import Point Cloud
|
||||
try:
|
||||
bpy.ops.wm.alembic_import(filepath=args.SFM_Data)
|
||||
bpy.ops.wm.alembic_import(filepath=args.model)
|
||||
all_abc_info = bpy.context.selected_editable_objects[:]
|
||||
for obj in all_abc_info:
|
||||
if obj.name == 'mvgPointCloud.001': #May have a problem with such hard code
|
||||
|
@ -272,8 +245,8 @@ def main():
|
|||
particle_system.instance_object = bpy.data.objects["Plane"]
|
||||
particle_system.emit_from = 'VERT'
|
||||
|
||||
if (args.SFM_Data.endswith('.abc')):
|
||||
particle_system.count = int(args.Point_Cloud_Density * len(obj.data.vertices.values()))
|
||||
if args.model.lower().endswith('.abc'):
|
||||
particle_system.count = int(args.pointCloudDensity * len(obj.data.vertices.values()))
|
||||
particle_system.frame_end = 1.0
|
||||
particle_system.use_emit_random = False
|
||||
particle_system.particle_size = 0.02
|
||||
|
@ -283,15 +256,18 @@ def main():
|
|||
particle_system.rotation_mode = 'GLOB_X'
|
||||
|
||||
except RuntimeError:
|
||||
print("Error: while importing the alembic file (Point Cloud).")
|
||||
#Or import obj directly
|
||||
print("Error while importing the alembic file (Point Cloud): " + args.model)
|
||||
raise
|
||||
|
||||
# The import via obj needs a bit of work too. For showing an outline of the object, we need to add two materials to the mesh :
|
||||
|
||||
# For showing an outline of the object, we need to add two materials to the mesh:
|
||||
# Center and Edge, we are using a method that consists in having a "bold" effect on the Edge Material so we can see it
|
||||
# around the Center material. We do that by using a Solidify Modifier on which we flip normals and reduce Thickness to bellow zero.
|
||||
# around the Center material. We use a Solidify Modifier on which we flip normals and reduce Thickness to bellow zero.
|
||||
# The more the thickness get bellow zero, the more the egde will be largely revealed.
|
||||
elif (args.SFM_Data.endswith('.obj')):
|
||||
bpy.ops.import_scene.obj(filepath=args.SFM_Data)
|
||||
elif args.model.lower().endswith('.obj'):
|
||||
print("Import OBJ")
|
||||
|
||||
bpy.ops.import_scene.obj(filepath=args.model)
|
||||
|
||||
center = bpy.data.materials.new('Center')
|
||||
center.use_nodes = True
|
||||
|
@ -300,10 +276,9 @@ def main():
|
|||
center.node_tree.links.new(center.node_tree.nodes['Emission'].outputs['Emission'], center.node_tree.nodes['Material Output'].inputs['Surface'])
|
||||
center.node_tree.nodes['Emission'].inputs[0].default_value = (0,0,0,0)
|
||||
|
||||
if not args.Use_Background and args.SFM_Data.endswith('.obj'):
|
||||
if not args.useBackground and args.model.lower().endswith('.obj'):
|
||||
center.node_tree.nodes['Emission'].inputs[0].default_value = (0.05, 0.05, 0.05, 1) #Same Color as the no background color in blender
|
||||
|
||||
|
||||
edge = bpy.data.materials.new('Edge')
|
||||
|
||||
edge.use_nodes = True
|
||||
|
@ -311,8 +286,8 @@ def main():
|
|||
edge.node_tree.nodes.new(type='ShaderNodeEmission')
|
||||
edge.use_backface_culling = True
|
||||
edge.node_tree.links.new(edge.node_tree.nodes['Emission'].outputs['Emission'], edge.node_tree.nodes['Material Output'].inputs['Surface'])
|
||||
edge.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Edge_Color, 'Invalid Color')
|
||||
|
||||
edge.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.edgeColor, 'Invalid Color')
|
||||
|
||||
bpy.data.meshes['mesh'].materials.clear()
|
||||
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Center'])
|
||||
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Edge'])
|
||||
|
@ -325,17 +300,17 @@ def main():
|
|||
bpy.data.objects['mesh'].modifiers["New"].use_flip_normals = True
|
||||
bpy.data.objects['mesh'].modifiers["New"].material_offset = 1
|
||||
else:
|
||||
print("SFM_Data isn't in the right format, alembics(.abc) and object(.obj) only are supported")
|
||||
raise ValueError("sfmData: unknown file format, only alembic (.abc) and object (.obj) are supported: " + args.model)
|
||||
|
||||
#WE HAVE TO USE THE COMPOSITING GRAPH TO MAKE THE BACKGROUND IMAGE VISIBLE
|
||||
# We setup all the nodes in the first place, even if we don't need them in our configuration. We put the setting in all of them.
|
||||
# Only after having done that we can control which of the node we link in the graph according to the option we were given.
|
||||
print("Create compositing graph")
|
||||
|
||||
# We use the compositing graph to add the background image.
|
||||
# If the SFM Data is a Mesh, its extension is .obj so we have to build the graph accordingly. If the Background image setting was activated,
|
||||
# we need to include it in our node tree through the "Image" and Scale node.
|
||||
try:
|
||||
bpy.context.scene.use_nodes = True
|
||||
|
||||
#CREATE ALL NODES WE NEED (regardless of the options)
|
||||
# Create all the nodes that we could need
|
||||
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeAlphaOver")
|
||||
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeScale")
|
||||
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeImage")
|
||||
|
@ -343,19 +318,18 @@ def main():
|
|||
bpy.context.scene.node_tree.nodes.new(type="CompositorNodePremulKey")
|
||||
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeMixRGB")
|
||||
|
||||
#SET THEM UP CORRECTLY (still regardless of the option)
|
||||
bpy.data.scenes["Scene"].node_tree.nodes["Mix"].blend_type = 'LIGHTEN'
|
||||
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_duration = number_of_frame
|
||||
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_offset = offset
|
||||
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].space = 'RENDER_SIZE'
|
||||
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].frame_method = 'CROP'
|
||||
|
||||
#LINKS THE NODES THAT NEEDS TO BE LINKED
|
||||
if args.Use_Background :
|
||||
if args.SFM_Data.endswith('.obj'):
|
||||
# create links between nodes
|
||||
if args.useBackground :
|
||||
if args.model.lower().endswith('.obj'):
|
||||
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
|
||||
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
|
||||
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
|
||||
|
@ -363,43 +337,55 @@ def main():
|
|||
else:
|
||||
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Over'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
|
||||
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
|
||||
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[2])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[1])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
|
||||
else:
|
||||
if args.SFM_Data.endswith('.obj'):
|
||||
if args.model.lower().endswith('.obj'):
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
|
||||
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
|
||||
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
|
||||
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
|
||||
except RuntimeError:
|
||||
print("Error: while composing the compositing graph.")
|
||||
|
||||
## Starts the rendering and launchs it with a blender animator player
|
||||
print("Error while creating the compositing graph.")
|
||||
raise
|
||||
|
||||
try:
|
||||
# Setup the render format and filepath
|
||||
bpy.context.scene.render.image_settings.file_format = 'FFMPEG'
|
||||
if args.Output_Format == 'mkv':
|
||||
if args.videoFormat == 'mkv':
|
||||
bpy.context.scene.render.ffmpeg.format = 'MKV'
|
||||
elif args.Output_Format == 'avi':
|
||||
elif args.videoFormat == 'avi':
|
||||
bpy.context.scene.render.ffmpeg.format = 'AVI'
|
||||
elif args.Output_Format == 'mov':
|
||||
elif args.videoFormat == 'mov':
|
||||
bpy.context.scene.render.ffmpeg.format = 'QUICKTIME'
|
||||
else:
|
||||
bpy.context.scene.render.ffmpeg.format = 'MPEG4'
|
||||
bpy.context.scene.render.filepath = args.output_path + '/render.' + args.Output_Format
|
||||
bpy.context.scene.render.filepath = args.outputPath + '/render.' + args.videoFormat
|
||||
|
||||
print("Start Rendering")
|
||||
# Render everything on to the filepath
|
||||
bpy.ops.render.render(animation=True)
|
||||
# Starts a player automatically to play the output (Usefull for developpers to see what they do but it doesn't really have its place in a software)
|
||||
print("Rendering Done")
|
||||
# Starts a player automatically to play the output
|
||||
# bpy.ops.render.play_rendered_anim()
|
||||
except RuntimeError:
|
||||
print("Error: while rendering the scene.")
|
||||
|
||||
print("Error while rendering the scene")
|
||||
raise
|
||||
|
||||
return 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
err = 1
|
||||
try:
|
||||
err = main()
|
||||
except Exception as e:
|
||||
print("\n" + str(e))
|
||||
sys.exit(err)
|
||||
sys.exit(err)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue