[nodes] RenderAnimatedCamera: clean up

This commit is contained in:
Fabien Castan 2021-07-23 16:23:10 +02:00
parent f8141796f3
commit fdf45fa6f4
2 changed files with 193 additions and 213 deletions

View file

@ -7,6 +7,7 @@ import sys # to get command line args
import argparse # to parse options for us and print a nice help message
from distutils.util import strtobool
def main():
argv = sys.argv
@ -23,104 +24,82 @@ def main():
parser = argparse.ArgumentParser(description=usage_text)
parser.add_argument(
"--sfMCameraPath", dest="SFM_cam_path", metavar='FILE', required=True,
help="This text will be used to render an image",
"--sfmCameraPath", metavar='FILE', required=True,
help="sfmData with the animated camera.",
)
parser.add_argument(
"--useBackground", dest="Use_Background", type=strtobool, required=True,
"--useBackground", type=strtobool, required=True,
help="Diplay the background image or not.",
)
parser.add_argument(
"--undistortedImages", dest="undisto_images", metavar='FILE', required=False,
"--undistortedImages", metavar='FILE', required=False,
help="Save the generated file to the specified path",
)
parser.add_argument(
"--sfMData", dest="SFM_Data", metavar='FILE', required=True,
help="These info carry the Point Cloud or mesh we need.",
"--model", metavar='FILE', required=True,
help="Point Cloud or Mesh used in the rendering.",
)
#Point Cloud Arguments (When SFM Data is .abc)
# Point Cloud Arguments (when SFM Data is .abc)
parser.add_argument(
"--pointCloudDensity", dest="Point_Cloud_Density", type=float, required=False,
"--pointCloudDensity", type=float, required=False,
help="Number of point from the cloud rendered",
)
parser.add_argument(
"--particleSize", dest="Particle_Size", type=float, required=False,
help="Scale of every particle used to show the point cloud",
"--particleSize", type=float, required=False,
help="Scale of particles used to show the point cloud",
)
parser.add_argument(
"--particleColor", dest="Particle_Color", type=str, required=False,
help="Color of every particle used to show the point cloud (SFM Data is .abc)",
"--particleColor", type=str, required=False,
help="Color of particles used to show the point cloud (SFM Data is .abc)",
)
#Mesh Arguments (When SFM Data is .obj)
# Mesh Arguments (when SFM Data is .obj)
parser.add_argument(
"--edgeColor", dest="Edge_Color", type=str, required=False,
"--edgeColor", type=str, required=False,
help="Color of the edges of the rendered object (SFM Data is .obj)",
)
#Output Arguments
# Output Arguments
parser.add_argument(
"--outputFormat", dest="Output_Format", type=str, required=True,
"--videoFormat", type=str, required=True,
help="Format of the video output",
)
parser.add_argument(
"--outputPath", dest="output_path", metavar='FILE', required=True,
"--outputPath", metavar='FILE', required=True,
help="Render an image to the specified path",
)
args = parser.parse_args(argv)
if not argv:
parser.print_help()
return
return -1
if not args.undisto_images and args.Use_Background :
print("Error: --undisto_images argument not given, aborting.")
if not args.undistortedImages and args.useBackground:
print("Error: --undistortedImages argument not given, aborting.")
parser.print_help()
return
if not args.Point_Cloud_Density and args.SFM_Data.endswith('.abc'):
print("Error: --Point_Cloud_Density argument not given, aborting.")
parser.print_help()
return
return -1
if not args.Particle_Size and args.SFM_Data.endswith('.abc'):
print("Error: --Particle_Size argument not given, aborting.")
parser.print_help()
return
if not args.Particle_Color and args.SFM_Data.endswith('.abc'):
print("Error: --Particle_Color argument not given, aborting.")
parser.print_help()
return
if not args.Edge_Color and args.SFM_Data.endswith('.obj'):
print("Error: --Edge_Color argument not given, aborting.")
parser.print_help()
return
#Clear Current Scene
# Clear Current Scene
try:
for objects in bpy.data.objects:
bpy.data.objects.remove(objects)
except RuntimeError:
print("Error: While clearing current scene")
print("Error while clearing current scene")
raise
#The Switcher is the setting for most of the colors (if you want to add some, do it here and in the arguments of the node)
# The Switcher is the setting for most of the colors (if you want to add some, do it here and in the arguments of the node)
# Keep in mind that we use the same switcher for both the Edge Color and the Particle Color settings.
# So if you add a color to one of them in the node, might has well add it to the other.
@ -132,10 +111,10 @@ def main():
'Magenta':(1.0, 0, 0.75, 1)
}
# import Undistorted Images
print("Import Undistorted Images")
undis_imgs = []
#Some of these variable will be very useful in the next steps keep them in mind
# Some of these variable will be very useful in the next steps keep them in mind
number_of_frame = 0
offset = 0
first_image_name = ""
@ -143,21 +122,23 @@ def main():
# In this part of the code we take the undistorted images and we process some info about them
# undis_imgs is the list of the images' names
# first_image_name says it all in the name
# The offset is important, it corresponds to the last part of the name of the first frame
# In most case it will hopefully be 0 but the sequence may start from a more advanced frame
if args.Use_Background :
files = os.listdir(args.undisto_images)
# The offset is important, it corresponds to the last part of the name of the first frame.
# In most case, it will be 0 but the sequence may start from a more advanced frame.
if args.useBackground:
files = os.listdir(args.undistortedImages)
for f in files :
if f.endswith(".exr") and not f.__contains__("UVMap"):
undis_imgs.append({"name":f})
number_of_frame = len(undis_imgs)
print("undis_imgs: " + str(undis_imgs))
first_image_name = undis_imgs[0]['name']
offset = int(re.findall(r'\d+', first_image_name)[-1]) - 1
except RuntimeError:
print("Error: while importing the undistorted images.")
print("Error while importing the undistorted images.")
raise
#import abc (Animated Camera)
print("Import Animated Camera")
try:
@ -167,14 +148,12 @@ def main():
# Once the cam has been found we select the main camera of the scene.
# The rest of the code is setting up the display of the background image,
# Since it's not a simple image but an image Sequence, we have to use the offset and the number of frame
# Information taken from the previous block of code.
# The frame method is the one that align with the Point Cloud althought this may change,
# so feel free to try out the two other settings if something changes on previous nodes.
# We also have to make the scene render film transparent because we want to be able to display
# our background afterward in the next block of code
# As it is not a simple image but an image Sequence, we have to use the offset and the number of frames.
bpy.ops.wm.alembic_import(filepath=args.SFM_cam_path)
# We also have to make the scene render film transparent because we want to be able to display
# our background afterwards.
bpy.ops.wm.alembic_import(filepath=args.sfmCameraPath)
animated_cams = bpy.context.selected_editable_objects[:]
cam_location = mathutils.Vector((0, 0, 0))
cam_obj = None
@ -185,8 +164,8 @@ def main():
bpy.context.scene.camera = obj
cam_location = obj.location
cam_obj = obj
if args.Use_Background :
bpy.ops.image.open(filepath=args.undisto_images + "/" + first_image_name, directory=args.undisto_images, files=undis_imgs, relative_path=True, show_multiview=False)
if args.useBackground :
bpy.ops.image.open(filepath=args.undistortedImages + "/" + first_image_name, directory=args.undistortedImages, files=undis_imgs, relative_path=True, show_multiview=False)
bpy.data.cameras[obj.data.name].background_images.new()
bpy.data.cameras[obj.data.name].show_background_images = True
bpy.data.cameras[obj.data.name].background_images[0].image = bpy.data.images[first_image_name]
@ -196,26 +175,20 @@ def main():
bpy.data.cameras[obj.data.name].background_images[0].image_user.frame_start = 1
bpy.context.scene.render.film_transparent = True
except RuntimeError:
print("Error: while importing the alembic file (Animated Camera).")
print("Error while importing the alembic file (Animated Camera): " + args.sfmCameraPath)
raise
print("Create the particle plane")
#Place the particle plane
try:
# This is a key step if you are displaying a Point Cloud.
# We are using a particle system later in the code to display the Point Cloud.
# To make it so, we need a model for the particle, a object that will be repeated a lot to make a shape.
# In order to do that we need a plane (one face only for optimisation purpose) that always face the camera.
# So we made a plane and made it a child (in the parenting system) of the camera. That way whenever the cam
# moves, the plane moves and turn accordingly.
# We need to setup a model for the particle, a plane that always face the camera.
# It is declared as a child of the camera in the parenting system, so when the camera moves, the plane moves accordingly.
# Bmesh creates the plane and put it into the mesh. We change the size of the plane according to
# the scale given in arguments. We need to adjust the plane's location because putting it at the
# exact location of the camera blocks the view. Then, the switcher gives a RGBA color according to
# the given argument. We have to use a material that uses 'Emission'
# otherwise the particle is going to react to lights and we don't really need that (the color wouldn't be clear).
# We use an 'Emission' material so it does not react to lights.
# To do that we have to use the shader 'node_tree' we clear all links between nodes, create the emission node
# and connect it to the 'Material Output' node (which is what we will see in render).
# Finally we use the switcher to color the model.
# and connect it to the 'Material Output' node.
plane = bpy.data.meshes.new('Plane')
objectsPlane = bpy.data.objects.new(name="Plane", object_data=plane)
@ -223,8 +196,8 @@ def main():
bmesh.ops.create_grid(bm, x_segments = 1, y_segments = 1, size = 1.0)
bm.to_mesh(plane)
bm.free()
if (args.SFM_Data.endswith('.abc')):
objectsPlane.scale = mathutils.Vector((args.Particle_Size, args.Particle_Size, args.Particle_Size))
if args.model.lower().endswith('.abc'):
objectsPlane.scale = mathutils.Vector((args.particleSize, args.particleSize, args.particleSize))
cam_location.y += -2.0
objectsPlane.location = cam_location
bpy.context.scene.collection.objects.link(objectsPlane)
@ -237,29 +210,29 @@ def main():
objectsPlane.active_material.node_tree.links.clear()
objectsPlane.active_material.node_tree.nodes.new(type='ShaderNodeEmission')
objectsPlane.active_material.node_tree.links.new(objectsPlane.active_material.node_tree.nodes['Emission'].outputs['Emission'], objectsPlane.active_material.node_tree.nodes['Material Output'].inputs['Surface'])
if (args.SFM_Data.endswith('.abc')):
objectsPlane.active_material.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Particle_Color, 'Invalid Color')
if args.model.lower().endswith('.abc'):
objectsPlane.active_material.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.particleColor, 'Invalid Color')
except RuntimeError:
print("Error: while setting up the particle model.")
raise
if (args.SFM_Data.endswith('.abc')):
# This part is all about importing the Point Cloud and setting up the Particle System.
# After importing the alembic, we look for a specific mesh in the file. Again the hardcoded name would be a
# problem if the previous nodes hadn't name it specificaly that (.001 because a mesh with the same name has
# been imported with the animated camera).
# Once the Point Cloud has been found. We make it the active object (important for the node_tree later).
# Then, we create a particle system on it. Render_type set to object and the said object is the plane,
# thanks to that the particle format is set to repeat the plane. Emit_from 'vert' so the points of the
# point cloud are the one rendering the particle.
# The count is the number of particle repeated on the point cloud. We use the rate given as arguments
# to give a number. Most of the following settings are just formalities but use_rotation and use_rotation_instance,
# those two make sure to use the same rotaion than the model (which is needed to have the particle always facing the camera).
if args.model.lower().endswith('.abc'):
#import abc (Point Cloud)
print("Import ABC Point Cloud")
# After importing the alembic, we look for a specific Point Cloud in the file.
# We make it the active object (important for the node_tree later).
# Then, we create a particle system on it. Render_type set to object and the said object is the plane.
# Emit_from 'vert' so the points of the point cloud are the one rendering the particle.
# The count is the number of particles repeated on the point cloud. We use the rate given as arguments
# to give a number.
# use_rotation and use_rotation_instance ensure that we use the same rotation than the model (which is needed to have the particle always facing the camera).
# Import Point Cloud
try:
bpy.ops.wm.alembic_import(filepath=args.SFM_Data)
bpy.ops.wm.alembic_import(filepath=args.model)
all_abc_info = bpy.context.selected_editable_objects[:]
for obj in all_abc_info:
if obj.name == 'mvgPointCloud.001': #May have a problem with such hard code
@ -272,8 +245,8 @@ def main():
particle_system.instance_object = bpy.data.objects["Plane"]
particle_system.emit_from = 'VERT'
if (args.SFM_Data.endswith('.abc')):
particle_system.count = int(args.Point_Cloud_Density * len(obj.data.vertices.values()))
if args.model.lower().endswith('.abc'):
particle_system.count = int(args.pointCloudDensity * len(obj.data.vertices.values()))
particle_system.frame_end = 1.0
particle_system.use_emit_random = False
particle_system.particle_size = 0.02
@ -283,15 +256,18 @@ def main():
particle_system.rotation_mode = 'GLOB_X'
except RuntimeError:
print("Error: while importing the alembic file (Point Cloud).")
#Or import obj directly
print("Error while importing the alembic file (Point Cloud): " + args.model)
raise
# The import via obj needs a bit of work too. For showing an outline of the object, we need to add two materials to the mesh :
# For showing an outline of the object, we need to add two materials to the mesh:
# Center and Edge, we are using a method that consists in having a "bold" effect on the Edge Material so we can see it
# around the Center material. We do that by using a Solidify Modifier on which we flip normals and reduce Thickness to bellow zero.
# around the Center material. We use a Solidify Modifier on which we flip normals and reduce Thickness to bellow zero.
# The more the thickness get bellow zero, the more the egde will be largely revealed.
elif (args.SFM_Data.endswith('.obj')):
bpy.ops.import_scene.obj(filepath=args.SFM_Data)
elif args.model.lower().endswith('.obj'):
print("Import OBJ")
bpy.ops.import_scene.obj(filepath=args.model)
center = bpy.data.materials.new('Center')
center.use_nodes = True
@ -300,10 +276,9 @@ def main():
center.node_tree.links.new(center.node_tree.nodes['Emission'].outputs['Emission'], center.node_tree.nodes['Material Output'].inputs['Surface'])
center.node_tree.nodes['Emission'].inputs[0].default_value = (0,0,0,0)
if not args.Use_Background and args.SFM_Data.endswith('.obj'):
if not args.useBackground and args.model.lower().endswith('.obj'):
center.node_tree.nodes['Emission'].inputs[0].default_value = (0.05, 0.05, 0.05, 1) #Same Color as the no background color in blender
edge = bpy.data.materials.new('Edge')
edge.use_nodes = True
@ -311,8 +286,8 @@ def main():
edge.node_tree.nodes.new(type='ShaderNodeEmission')
edge.use_backface_culling = True
edge.node_tree.links.new(edge.node_tree.nodes['Emission'].outputs['Emission'], edge.node_tree.nodes['Material Output'].inputs['Surface'])
edge.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.Edge_Color, 'Invalid Color')
edge.node_tree.nodes['Emission'].inputs[0].default_value = switcher.get(args.edgeColor, 'Invalid Color')
bpy.data.meshes['mesh'].materials.clear()
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Center'])
bpy.data.meshes['mesh'].materials.append(bpy.data.materials['Edge'])
@ -325,17 +300,17 @@ def main():
bpy.data.objects['mesh'].modifiers["New"].use_flip_normals = True
bpy.data.objects['mesh'].modifiers["New"].material_offset = 1
else:
print("SFM_Data isn't in the right format, alembics(.abc) and object(.obj) only are supported")
raise ValueError("sfmData: unknown file format, only alembic (.abc) and object (.obj) are supported: " + args.model)
#WE HAVE TO USE THE COMPOSITING GRAPH TO MAKE THE BACKGROUND IMAGE VISIBLE
# We setup all the nodes in the first place, even if we don't need them in our configuration. We put the setting in all of them.
# Only after having done that we can control which of the node we link in the graph according to the option we were given.
print("Create compositing graph")
# We use the compositing graph to add the background image.
# If the SFM Data is a Mesh, its extension is .obj so we have to build the graph accordingly. If the Background image setting was activated,
# we need to include it in our node tree through the "Image" and Scale node.
try:
bpy.context.scene.use_nodes = True
#CREATE ALL NODES WE NEED (regardless of the options)
# Create all the nodes that we could need
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeAlphaOver")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeScale")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeImage")
@ -343,19 +318,18 @@ def main():
bpy.context.scene.node_tree.nodes.new(type="CompositorNodePremulKey")
bpy.context.scene.node_tree.nodes.new(type="CompositorNodeMixRGB")
#SET THEM UP CORRECTLY (still regardless of the option)
bpy.data.scenes["Scene"].node_tree.nodes["Mix"].blend_type = 'LIGHTEN'
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_duration = number_of_frame
bpy.data.scenes["Scene"].node_tree.nodes["Image"].frame_offset = offset
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].space = 'RENDER_SIZE'
bpy.data.scenes["Scene"].node_tree.nodes["Scale"].frame_method = 'CROP'
#LINKS THE NODES THAT NEEDS TO BE LINKED
if args.Use_Background :
if args.SFM_Data.endswith('.obj'):
# create links between nodes
if args.useBackground :
if args.model.lower().endswith('.obj'):
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
@ -363,43 +337,55 @@ def main():
else:
bpy.context.scene.node_tree.nodes["Image"].image = bpy.data.images[first_image_name]
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Over'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Over'].inputs[1])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
else:
if args.SFM_Data.endswith('.obj'):
if args.model.lower().endswith('.obj'):
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Mix'].outputs['Image'], bpy.context.scene.node_tree.nodes['Composite'].inputs['Image'])
#Two Inputs of AlphaOver are named "Image" so we'll use index instead
# Two Inputs of AlphaOver are named "Image" so we use indexes instead
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Render Layers'].outputs['Image'], bpy.context.scene.node_tree.nodes['Alpha Convert'].inputs['Image'])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Alpha Convert'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[2])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Scale'].outputs['Image'], bpy.context.scene.node_tree.nodes['Mix'].inputs[1])
bpy.context.scene.node_tree.links.new(bpy.context.scene.node_tree.nodes['Image'].outputs['Image'], bpy.context.scene.node_tree.nodes['Scale'].inputs['Image'])
except RuntimeError:
print("Error: while composing the compositing graph.")
## Starts the rendering and launchs it with a blender animator player
print("Error while creating the compositing graph.")
raise
try:
# Setup the render format and filepath
bpy.context.scene.render.image_settings.file_format = 'FFMPEG'
if args.Output_Format == 'mkv':
if args.videoFormat == 'mkv':
bpy.context.scene.render.ffmpeg.format = 'MKV'
elif args.Output_Format == 'avi':
elif args.videoFormat == 'avi':
bpy.context.scene.render.ffmpeg.format = 'AVI'
elif args.Output_Format == 'mov':
elif args.videoFormat == 'mov':
bpy.context.scene.render.ffmpeg.format = 'QUICKTIME'
else:
bpy.context.scene.render.ffmpeg.format = 'MPEG4'
bpy.context.scene.render.filepath = args.output_path + '/render.' + args.Output_Format
bpy.context.scene.render.filepath = args.outputPath + '/render.' + args.videoFormat
print("Start Rendering")
# Render everything on to the filepath
bpy.ops.render.render(animation=True)
# Starts a player automatically to play the output (Usefull for developpers to see what they do but it doesn't really have its place in a software)
print("Rendering Done")
# Starts a player automatically to play the output
# bpy.ops.render.play_rendered_anim()
except RuntimeError:
print("Error: while rendering the scene.")
print("Error while rendering the scene")
raise
return 0
if __name__ == "__main__":
main()
err = 1
try:
err = main()
except Exception as e:
print("\n" + str(e))
sys.exit(err)
sys.exit(err)