mirror of
https://github.com/alicevision/Meshroom.git
synced 2025-04-28 17:57:16 +02:00
Merge pull request #2121 from alicevision/dev/bracketsSizeEquality
[nodes] HDR Fusion: Select group with largest bracket number in case of equality
This commit is contained in:
commit
24b60b3d42
3 changed files with 23 additions and 3 deletions
|
@ -265,6 +265,13 @@ Calibrate LDR to HDR response curve from samples.
|
|||
if len(bracketSizes) == 0:
|
||||
node.nbBrackets.value = 0
|
||||
else:
|
||||
bestTuple = bracketSizes.most_common(1)[0]
|
||||
bestTuple = None
|
||||
for tuple in bracketSizes.most_common():
|
||||
if bestTuple is None or tuple[1] > bestTuple[1]:
|
||||
bestTuple = tuple
|
||||
elif tuple[1] == bestTuple[1]:
|
||||
bestTuple = tuple if tuple[0] > bestTuple[0] else bestTuple
|
||||
|
||||
bestBracketSize = bestTuple[0]
|
||||
bestCount = bestTuple[1]
|
||||
node.nbBrackets.value = bestBracketSize
|
||||
|
|
|
@ -351,8 +351,15 @@ Merge LDR images into HDR images.
|
|||
if len(bracketSizes) == 0:
|
||||
node.nbBrackets.value = 0
|
||||
else:
|
||||
bestTuple = bracketSizes.most_common(1)[0]
|
||||
bestTuple = None
|
||||
for tuple in bracketSizes.most_common():
|
||||
if bestTuple is None or tuple[1] > bestTuple[1]:
|
||||
bestTuple = tuple
|
||||
elif tuple[1] == bestTuple[1]:
|
||||
bestTuple = tuple if tuple[0] > bestTuple[0] else bestTuple
|
||||
|
||||
bestBracketSize = bestTuple[0]
|
||||
bestCount = bestTuple[1]
|
||||
node.nbBrackets.value = bestBracketSize
|
||||
|
||||
def processChunk(self, chunk):
|
||||
|
|
|
@ -291,7 +291,13 @@ Sample pixels from Low range images for HDR creation.
|
|||
if len(bracketSizes) == 0:
|
||||
node.nbBrackets.value = 0
|
||||
else:
|
||||
bestTuple = bracketSizes.most_common(1)[0]
|
||||
bestTuple = None
|
||||
for tuple in bracketSizes.most_common():
|
||||
if bestTuple is None or tuple[1] > bestTuple[1]:
|
||||
bestTuple = tuple
|
||||
elif tuple[1] == bestTuple[1]:
|
||||
bestTuple = tuple if tuple[0] > bestTuple[0] else bestTuple
|
||||
|
||||
bestBracketSize = bestTuple[0]
|
||||
bestCount = bestTuple[1]
|
||||
node.outliersNb = len(inputs) - (bestBracketSize * bestCount) # Compute number of outliers
|
||||
|
|
Loading…
Add table
Reference in a new issue